你的位置:首頁 > 電路保護(hù) > 正文

可調(diào)二極管用于實(shí)現(xiàn)均流控制器設(shè)計

發(fā)布時間:2022-11-29 責(zé)任編輯:lina

【導(dǎo)讀】把多個電源的輸出連接起來可使其均分一個公共負(fù)載電流。多個電源之間的負(fù)載電流分配取決于個別電源的輸出電壓以及至共同負(fù)載的電源通路電阻。這被稱為“壓降均分”(droop sharing)。為了避免電源反向饋電并使系統(tǒng)與故障電源相隔離,可以采取與每個電源串聯(lián)的方式插入二極管。當(dāng)然,這個增加的二極管電壓降會對負(fù)載均分的平衡產(chǎn)生影響。


“只許成功,不許失敗”—— 對于當(dāng)今那些始終保持正常運(yùn)轉(zhuǎn)的電氣基礎(chǔ)設(shè)施 (電信網(wǎng)絡(luò)、互聯(lián)網(wǎng)和電網(wǎng)等) 的設(shè)計師而言,這很可能是他們的座右銘。問題是,此類基礎(chǔ)設(shè)施的構(gòu)件 (從不起眼的電容器到高度智能化的刀片服務(wù)器) 其使用壽命都是有限的,而且它們的壽命終止常常會出現(xiàn)在您擔(dān)心、不愿意的時刻。針對停機(jī)問題的常用解決方案是采用冗余結(jié)構(gòu),這是指在某個關(guān)鍵組件發(fā)生故障時隨時可以接管并生效的后備系統(tǒng)。


例如:交付給用戶的高可用性計算機(jī)服務(wù)器通常配有兩個相似的 DC 電源,用于給每塊專用電路板饋電。每個電源能獨(dú)自承擔(dān)整個負(fù)載的供電,而且兩個電源通過電源二極管連接在一起實(shí)現(xiàn)二極管“或”,以構(gòu)成單個 1 + 1 冗余電源。就是說,由電壓較高的那個電源向負(fù)載輸送功率,而另一個電源則處于待用狀態(tài)。假如那個工作電源的電壓由于故障或移除的原因而下降或消失,則曾經(jīng)是具有較低電壓的電源變成了較高電壓電源,于是由它接管為負(fù)載供電的工作。二極管負(fù)責(zé)避免反向饋電及兩個電源之間的交叉?zhèn)鲗?dǎo),同時保護(hù)系統(tǒng)免遭電源故障的損壞。


二極管“或”是一種簡單的“贏家通吃”之系統(tǒng),這里由電壓的電源提供全部的負(fù)載電流。電壓較低的電源則處于空閑狀態(tài),直到被調(diào)用為止。雖然易于實(shí)現(xiàn),但 1 + 1 解決方案效率欠佳,有可能被更好地用于改善總體工作效率及壽命的資源給白白浪費(fèi)掉了。由所有電源共同均分負(fù)載的供電效果要好得多,其優(yōu)勢如下:


1、 如果各承擔(dān)一半的負(fù)載,那么電源的壽命會有所延長,并有利于散播電源熱量和減小電源組件上承受的熱應(yīng)力。電子產(chǎn)品關(guān)于壽命有這樣一條經(jīng)驗法則:溫度每下降 10°C,組件的故障率將減半。這對于提升可靠性是一項重大利好。

2、由于較低電壓電源始終處于可供使用的狀態(tài),因此當(dāng)切換至備用電源時卻發(fā)現(xiàn)其早已悄無聲息地發(fā)生了故障 (這在簡單的二極管“或”系統(tǒng)中是有可能出現(xiàn)的),這種情況并不令人感到意外。

3、在負(fù)載均分系統(tǒng)中,可以并聯(lián)多個現(xiàn)有的小電源以構(gòu)成一個較大的電源。

4、發(fā)生電源故障時的恢復(fù)動態(tài)特性更加平穩(wěn)快速,因為電源變化屬于“較多和較少”,而并非“關(guān)斷和接通”。

5、由兩個以一半容量運(yùn)行的電源構(gòu)成的DC/DC轉(zhuǎn)換器比采用單個以接近滿容量運(yùn)行的電源具有更好的總體轉(zhuǎn)換效率。


均流的方法


把多個電源的輸出連接起來可使其均分一個公共負(fù)載電流。多個電源之間的負(fù)載電流分配取決于個別電源的輸出電壓以及至共同負(fù)載的電源通路電阻。這被稱為“壓降均分”(droop sharing)。為了避免電源反向饋電并使系統(tǒng)與故障電源相隔離,可以采取與每個電源串聯(lián)的方式插入二極管。當(dāng)然,這個增加的二極管電壓降會對負(fù)載均分的平衡產(chǎn)生影響。


壓降均分雖然簡單,但均分準(zhǔn)確度的控制欠佳,而且串聯(lián)二極管將產(chǎn)生電壓和功率損耗。一種可控性更好的均流方式是監(jiān)視電源電流,將之與每個電源需要提供的平均電流進(jìn)行比較,然后調(diào)節(jié)電源電壓 (通過其微調(diào)引腳或反饋網(wǎng)絡(luò)),直到電源電流與要求值相匹配為止。這種方法需要布設(shè)至每個電源的導(dǎo)線 (一根共享總線),以指示每個電源需要貢獻(xiàn)的電流。均流環(huán)路補(bǔ)償采用定制的設(shè)計方式,以適應(yīng)電源環(huán)路動態(tài)特性。受控均流要求進(jìn)行謹(jǐn)慎的設(shè)計,并可使用所有的電源 (在某些系統(tǒng)中這是不可能的)。


本文介紹了一種新穎的均流方法,其可實(shí)現(xiàn)個別電源貢獻(xiàn)電流的主動控制,但同時具有壓降均分的簡單性。在該系統(tǒng)中,用可調(diào)二極管替代了一般的二極管,這種二極管具有可通過調(diào)節(jié)以實(shí)現(xiàn)平衡均流的接通電壓。此方法可獲得優(yōu)于壓降均分的均分準(zhǔn)確度,而且可調(diào)二極管用于實(shí)現(xiàn)均流所需消耗的功率極少,遠(yuǎn)遠(yuǎn)低于傳統(tǒng)二極管的功率損耗。由于不需要共享總線,因此其可實(shí)現(xiàn)較簡單和獨(dú)立于電源的補(bǔ)償和便攜式設(shè)計。對于那些難以使用或無法使用其微調(diào)引腳和反饋網(wǎng)絡(luò)的電源而言,這種方法是理想的選擇。


均流控制器


LTC4370 運(yùn)用了凌力爾特專有的可調(diào)二極管均流方法。該器件采用充當(dāng)可調(diào)二極管的外部 N 溝道MOSFET實(shí)現(xiàn)了兩個電源之間的負(fù)載平衡,這些二極管的接通電壓可以調(diào)節(jié),從而實(shí)現(xiàn)平衡均流。圖 1 示出了 LTC4370 在兩個 12V 電源之間均分一個 10A 負(fù)載的情形。


可調(diào)二極管用于實(shí)現(xiàn)均流控制器設(shè)計

圖 1:LTC4370 在兩個二極管“或”12V 電源之間平衡一個 10A 負(fù)載電流。均流通過調(diào)節(jié) MOSFET 電壓降以補(bǔ)償電源電壓的失配來實(shí)現(xiàn)


圖 2 示出了影響負(fù)載均分的器件內(nèi)部組件。誤差放大器EA 負(fù)責(zé)監(jiān)視 OUT1 和 OUT2 引腳之間的差分電壓。它設(shè)定兩個伺服放大器 (SA1 和 SA2,每個電源采用一個) 的正向調(diào)節(jié)電壓 VFR。伺服放大器調(diào)節(jié)外部 MOSFET 的柵極 (因而包括其電阻) 以使 MOSFET 兩端的正向壓降等于正向調(diào)節(jié)電壓。誤差放大器將較低電壓電源上的 VFR 設(shè)定為 25mV 的值。較高電壓電源上的伺服被設(shè)定為 “25mV + 兩個電源電壓的差”。這樣,兩個 OUT 引腳電壓實(shí)現(xiàn)了均等。OUT1 = OUT2 意味著 I1 ? R1 = I2 ? R2。于是,倘若 R1 = R2 則 I1 = I2??梢圆捎脤θ≈挡煌臋z測電阻器進(jìn)行簡單的調(diào)整以形成“比例式”均流,即:I1 / I2 = R2 / R1。請注意,負(fù)載電壓跟蹤低于電源電壓 25mV。


可調(diào)二極管用于實(shí)現(xiàn)均流控制器設(shè)計

圖 2:LTC4370 中與負(fù)載均分相關(guān)的內(nèi)部組件


MOSFET 與伺服放大器一道起一個二極管的作用,此二極管的接通電壓為正向調(diào)節(jié)電壓。MOSFET 在其正向壓降下降至低于調(diào)節(jié)電壓時被關(guān)斷。當(dāng) MOSFET 電流增加時,柵極電壓上升以減小導(dǎo)通電阻,從而把正向壓降保持在 VFR。這會發(fā)生在柵極電壓高出電源電壓達(dá) 12V 之前。電流的進(jìn)一步上升將導(dǎo)致 MOSFET 兩端的壓降以 IFET ? RDS(ON) 線性增加。


鑒于上述情況,當(dāng)誤差放大器設(shè)定了伺服放大器的正向調(diào)節(jié)電壓時,其在功能上等同于調(diào)節(jié) (基于 MOSFET 的) 二極管的接通電壓。調(diào)節(jié)范圍從 25mV 的值至由 RANGE 引腳設(shè)定的值 (見下文中的“設(shè)計考慮”)。


控制器能實(shí)現(xiàn) 0V 至 18V 電源的負(fù)載均分。當(dāng)兩個電源均低于 2.9V 時,需要在 VCC 引腳上連接一個 2.9V 至 6V 的外部電源,以為 LTC4370 供電。當(dāng)出現(xiàn)反向電流時,MOSFET 的柵極將在 1μs 之內(nèi)關(guān)斷。對于一個大的正向壓降,柵極也將在不到 1μs 的時間里接通??焖俳油?(這一點(diǎn)對于低電壓電源很重要) 是利用集成型充電泵輸出端上的一個儲能電容器實(shí)現(xiàn)的。該電容器在器件上電時儲存電荷,并在快速接通過程中輸送 1.4A 的柵極上拉電流。


/EN1 和 /EN2 引腳可用于關(guān)斷其各自的 MOSFET。需注意,電流仍會流過 MOSFET 的體二極管。當(dāng)兩個通道均關(guān)斷時,器件的電流消耗減低至每個電源 80μA。FETON 輸出負(fù)責(zé)指示各自的 MOSFET 是處于導(dǎo)通還是關(guān)斷狀態(tài)。


均流特性


可調(diào)二極管用于實(shí)現(xiàn)均流控制器設(shè)計

圖 3:當(dāng)電源電壓差異變化時,采用 LTC4370的均流特性方法


圖 3 示出了 LTC4370 采用可調(diào)二極管法時的均流特性。圖 3 包含兩幅曲線圖,皆在 x 軸上具有電源電壓差 VIN = VIN1 – VIN2。上方的曲線圖示出了兩個歸一化至負(fù)載電流的電源電流;下方的曲線圖則示出了 MOSFET 兩端的正向電壓降 VFWDx。當(dāng)兩個電源電壓相等 (?VIN = 0V) 時,電源電流相等,而且兩個正向電壓處于 25mV 的伺服電壓。當(dāng) VIN1 升至高于 VIN2 (?VIN 為正),VFWD2 保持在 25mV,而 VFWD1 則地隨著 VIN 而增加,以維持 OUT1 = OUT2。這反過來又使得 I1 = I2 = 0.5ILOAD。


對于由 RANGE 引腳設(shè)定的 VFWD 之調(diào)節(jié)有一個上限。就圖 3 中的例子而言,該限值為 525mV,由 RANGE 引腳設(shè)定在 500mV。一旦 VFWD1 達(dá)到該限值,均流就將變得不平衡,VIN1 的任何進(jìn)一步上升都將把 OUT1 推至高于 OUT2。


斷點(diǎn)為 VFR(MAX) – VFR(MIN),此時較高電壓電源提供了較多的負(fù)載電流。當(dāng) OUT1 – OUT2 = ILOAD ?RSENSE 時,全部負(fù)載電流轉(zhuǎn)移至 I1。這是 MOSFET M1 中功率耗散的工作點(diǎn),因為全部負(fù)載電流都從其中流過,產(chǎn)生了的正向壓降。例如:一個 10A 負(fù)載電流在 MOSFET 中引起 5.3W (= 10A ? 525mV) 的功率耗散。如果 ?VIN 有任何進(jìn)一步的上升,則控制器將使 M1 兩端的正向壓降減低至 25mV 的值。在未均分負(fù)載電流的情況下,對于大的 VIN,這可以限度地減少 MOSFET 中的功率耗散。對于負(fù) ?VIN,動作是對稱的。


在本例中,均分捕獲范圍為 500mV,并且由 RANGE 引腳電壓設(shè)定。憑借此范圍,控制器能夠共用具有一個 ±250mV 容差的電源。這轉(zhuǎn)化為:3.3V 電源的 ±7.5% 容差、5V 電源的 ±5% 容差、以及 12V 電源的 ±2% 容差。


設(shè)計考慮


以下是針對負(fù)載均分設(shè)計的一些高層次考慮因素。


MOSFET 選擇 — 理想的情況是,MOSFET 的 RDS(ON) 應(yīng)足夠小,這樣控制器就能夠在 MOSFET 中流過一半負(fù)載電流時在其兩端維持 25mV 的正向調(diào)節(jié)電壓。如果 RDS(ON) 較高,則會妨礙控制器調(diào)節(jié) 25mV。在此場合中,未調(diào)節(jié)壓降為 0.5IL ? RDS(ON)。當(dāng)該壓降上升時,均分?jǐn)帱c(diǎn) (現(xiàn)在由 VFR(MAX) – 0.5IL ? RDS(ON) 確定) 將提前出現(xiàn),導(dǎo)致捕獲范圍縮小。


由于 MOSFET 會耗散功率 (在圖 3 中高達(dá) IL ? VFR(MAX)),因此應(yīng)適當(dāng)?shù)剡x擇其封裝和散熱器。減少 MOSFET 功率耗散的辦法是采用準(zhǔn)確度更高的電源或者放棄均分范圍。


RANGE 引腳 — RANGE 引腳負(fù)責(zé)設(shè)定應(yīng)用的均分捕獲范圍,而這又取決于電源的準(zhǔn)確度。比如:采用 ±3% 容差電源的 5V 系統(tǒng)將需要一個 2 ? 5V ? 3% (即 300mV) 的均分范圍 (較高的電源為 5.15V,而較低的則為 4.85V)。RANGE 引腳具有一個 10μA 的精準(zhǔn)內(nèi)部上拉電流。在 RANGE 引腳上布設(shè)一個 30.1k 電阻器可將其電壓設(shè)定為 301mV,此時控制器能夠補(bǔ)償 300mV 的電源壓差 (見圖 4)。


可調(diào)二極管用于實(shí)現(xiàn)均流控制器設(shè)計

圖 4:帶狀態(tài)指示燈的 5V 二極管“或”負(fù)載均分。當(dāng)任意 MOSFET 關(guān)斷時,紅光 LED D1 將點(diǎn)亮,表示均分出現(xiàn)中斷


把 RANGE 引腳置于開路狀態(tài) (如圖 1 所示) 將提供 600mV 的可能均分范圍。但是,當(dāng)伺服電壓接近二極管電壓時,電流將會流過 MOSFET 的體二極管,從而引起均分損耗。把 RANGE 引腳連接至 VCC 可停用負(fù)載均分功能,以將器件變?yōu)橐粋€雙通道理想二極管控制器。


補(bǔ)償 — 負(fù)載均分環(huán)路利用連接在 COMP 引腳和地之間的單個電容器進(jìn)行補(bǔ)償。該電容器必須為 MOSFET 輸入 (柵極) 電容 CISS 的 50 倍。如果并未在使用快速柵極接通 (未接入 CPO 電容器),則該電容器可以僅為 10 x CISS。


檢測電阻器 — 檢測電阻器決定了負(fù)載均分準(zhǔn)確度。準(zhǔn)確度隨著電阻器電壓降的增加而有所改善。誤差放大器失調(diào)為 2mV。因此,25mV 的檢測電阻器壓降將產(chǎn)生一個 4% 的均分誤差。如果功率耗散指標(biāo)的重要性高于準(zhǔn)確度,則可減低檢測電阻器的阻值。


結(jié)論


歷史上,在電源之間平衡負(fù)載電流一直是個難題,這不禁讓我們聯(lián)想到走鋼絲的驚險場景。當(dāng)電源模塊或磚型電源未提供內(nèi)置支持時,有些設(shè)計人員將花費(fèi)大量的時間設(shè)計良好受控的系統(tǒng) (并在電源類型改變時重新進(jìn)行設(shè)計);而其他的設(shè)計師則將勉強(qiáng)接受基于電阻的粗略型壓降均分法。


LTC4370 采用了一種完全不同于任何其他控制器的電源負(fù)載均分方法。該器件可簡化設(shè)計 (特別是對于那些不適于實(shí)施執(zhí)行中微調(diào)的電源),而且其可移植到各種不同類型的電源。固有的二極管特性可防止電源遭受反向電流,并保護(hù)系統(tǒng)免遭故障電源的損壞。LTC4370 為一個精細(xì)復(fù)雜的問題提供了簡單、精巧和緊湊的解決方案。


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

【干貨】帶你解鎖AC/DC、DC/DC轉(zhuǎn)換器

【干貨】拋開教材,從實(shí)用的角度聊聊MOS管

高壓電動汽車的低壓電池監(jiān)控

降低工業(yè)和汽車應(yīng)用中陶瓷電容器的電源要求

多電源IC的上電時序控制你搞明白了么

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉