你的位置:首頁 > EMC安規(guī) > 正文

電感設(shè)計中的細(xì)節(jié)問題(下):磁芯損耗、線圈設(shè)計

發(fā)布時間:2022-11-11 來源:CODACA 責(zé)任編輯:wenwei

【導(dǎo)讀】本文是基于電感設(shè)計實際遇到的一些細(xì)節(jié)和科達(dá)嘉電子自身在相關(guān)細(xì)節(jié)上的理解以及對產(chǎn)品設(shè)計的管控來更好地處理可能出現(xiàn)的誤差或者問題,從而持續(xù)優(yōu)化產(chǎn)品以求實現(xiàn)綜合不止是磁芯而是包含多方面因素的優(yōu)化電感產(chǎn)品設(shè)計。


上個篇幅已對最大磁通密度進(jìn)行了重點介紹,本次篇幅將主要對磁芯損耗和線圈設(shè)計這兩個影響因素進(jìn)行分析。


01 磁芯損耗


雖然對于電感損耗的研究持續(xù)了很多年(甚至比100年前的斯坦梅茨公式(Steinmetz formula)更早)并且從未中斷,但是至今依然是實際工程問題中難以精確預(yù)測的問題。


電感的損耗主要分為銅線的損耗(wire loss)和磁芯的損耗(core loss),其中銅線的損耗在大多數(shù)應(yīng)用中已經(jīng)可以比較精確地預(yù)測了,因為主要包含的因素:直流損耗、交流損耗(趨膚效應(yīng),臨近效應(yīng)和渦流效應(yīng))在通常的應(yīng)用中已經(jīng)可以比較好地預(yù)測;


但是,磁芯的損耗很難有詳細(xì)的參數(shù)支撐計算,因為磁芯的損耗主因里磁滯損耗(hysteresis loss)和渦流損耗(eddy current loss)都需要依據(jù)具體的磁通密度B,磁通密度擺幅ΔB,形狀結(jié)構(gòu)和磁導(dǎo)率的直流偏置導(dǎo)致的損耗系數(shù),頻率損耗系數(shù),渦流損耗系數(shù)等來進(jìn)行計算,這些參數(shù)無法通過簡單的測量快速得到,而是需要通過一系列的試驗測試來通過圖形擬合的方法推導(dǎo)出來這些參數(shù)(稱為curve fitting)。


下圖大致分類了電感的損耗(Fig.1):


1666340502726211.png

Fig.1  電感的損耗分類(未填滿區(qū)域為輻射損失和雜散參數(shù)等其他損耗,占比一般很小而忽略不計)


測量方法


銅線的損耗此處不再贅述,這里主要來看一下磁芯損耗的測量。上個篇幅已經(jīng)提到為了測量磁通密度而使用B-H特性測試儀來搭建了測試平臺(如圖Fig.2),實際上測量磁芯的損耗可以直接用本測試平臺來完成。


16.png

Fig.2  CODACA測試磁通密度的原理框圖


測量的原理是:在原邊通入正弦波AC勵磁信號V1(t),儀器檢測并由軟件掃描記錄測得的副邊繞組感應(yīng)電壓V2(t),通過原邊的串接采樣電阻Rsense,測量原邊的實時電流i1(t)。如圖(Fig.2),在副邊繞組的感應(yīng)電壓完全是由勵磁信號產(chǎn)生的磁通瞬變而產(chǎn)生:


17.png


于是,副邊繞組的所確立的(N1/N2 )· i1(t) (原邊電流折算到副邊)與V2(t)形成磁芯的B-H特性曲線就是單純的勵磁磁場強(qiáng)度H與感應(yīng)磁場強(qiáng)度B之間的實測曲線,單向(如B正軸方向+B)勵磁的系統(tǒng)能量以儲能形式存儲在磁場中(有損耗);


反之,單向(如B負(fù)軸方向-B)退磁的系統(tǒng)能量以釋能形式釋放出磁場外(有損耗),在磁通密度B從+H的o處回到-H的o處,系統(tǒng)受到了功率輸入Pin也產(chǎn)生了功率輸出Pout:整個周期如前述是對稱的,DUT磁芯在周期T=1/f內(nèi)磁通擺幅動態(tài)平衡,于是通過對整個周期內(nèi)副邊繞組的功率流動積分:1666340846250430.png圖片就等同于DUT磁芯在磁化-退磁的過程產(chǎn)生的磁芯損耗(core loss),其中主要包含的損耗成分為磁滯損耗,但是當(dāng)測試頻率或者測試電壓提高時,渦流損耗的占比也會提升– 最終,無論是何種形式產(chǎn)生了損耗,科達(dá)嘉的測量方式主要遵循斯坦梅茨公式的計算方法,以實際工程參考價值為方向。


因此,此測試原理如下圖(Fig.3)所示:


1666340463632857.png

Fig.3磁芯損耗的測試原理:系統(tǒng)功率輸入與功率輸出的差值部分大致相當(dāng)于磁滯損耗(B-H曲線閉合區(qū)域內(nèi))


磁芯損耗的測試原理:系統(tǒng)功率輸入與功率輸出的差值部分大致相當(dāng)于磁滯損耗(B-H曲線閉合區(qū)域內(nèi))。由此,最終以單位體積的磁芯損耗(Pcv)為計量的磁芯損耗測試結(jié)果表達(dá)式就是:


19.png


同樣,為了完成右側(cè)的積分運(yùn)算,因為前述已經(jīng)提到電感兩端電壓和通過電流之間存在相位差,這個相位差是依賴整個系統(tǒng)測試回路的阻抗分配的很難固定關(guān)聯(lián)而減少積分號內(nèi)變量的數(shù)量,因此更切實可靠的做法是靠測試儀掃描整個回路的數(shù)值然后交給軟件去做運(yùn)算。這個功能同樣由CODACA研發(fā)中心的B-H特性測試儀來完成。


參數(shù)的準(zhǔn)確性


斯坦梅茨公式的一般表達(dá)式為:


20.png


其中:K 是損耗線性關(guān)聯(lián)系數(shù),靠實測數(shù)據(jù)通過curve fitting倒推出來;α,β分別是磁芯損耗對磁通擺幅Bm和開關(guān)頻率f的指數(shù)關(guān)聯(lián)系數(shù),同樣靠curve fitting推導(dǎo)。


觀察這個表達(dá)式會發(fā)現(xiàn)它和將磁芯損耗分為磁滯損耗和渦流損耗來區(qū)別對待不一樣,其實本質(zhì)上都是基于測試數(shù)據(jù)通過圖形擬合的方式得到的近似值,只不過這里將兩項系數(shù)又再次進(jìn)行了整合。


為了得到這些關(guān)鍵損耗系數(shù),對于這個3元變量關(guān)系式,通常的做法是固定2個變量再去測試第3個變量的影響系數(shù),從而分別得到這些參數(shù)。對于大多數(shù)相同材質(zhì)、相同形狀、相同繞線結(jié)構(gòu)的磁芯而言,得出這些數(shù)據(jù)可以方便延伸到同系列其他感值的電感,通常具有較高的準(zhǔn)確性。


除了測試的理論基礎(chǔ),對于磁芯而言,通常提供的損耗參考曲線是一張Bm - f- Pcv3元的關(guān)系曲線,但是缺乏測試環(huán)境溫度的影響,為了滿足這樣的需求,CODACA在B-H特性測試儀的基礎(chǔ)上增加了恒溫測試治具,從而可以準(zhǔn)確測試在特殊溫度環(huán)境下的磁芯損耗。


以下是CODACA自制的Sendust磁芯和FeSi磁芯的損耗曲線(如下圖Fig.3 ),科達(dá)嘉自制磁芯主要用于組裝自己的電感產(chǎn)品系列,目前已經(jīng)開發(fā)出非常多低損耗材質(zhì)系列,為提高電源的轉(zhuǎn)換效率、降低系統(tǒng)熱耗散壓力提供了更多優(yōu)化的選擇。


1666340434580349.png

Fig.3  CODACA自制Sendust和FeSi磁芯損耗測試結(jié)果


在線電感損耗計算工具


為了方便客戶能夠自助查詢在特定工作情況下CODACA電感產(chǎn)品的功率損耗,CODACA提供在線電感損耗計算工具:

codaca.com/PowerInductorLossComparison/ ,


或者直接訪問CODACA公司主頁:www.codaca.com選擇“設(shè)計工具”-“功率電感損耗對比”即可使用。


使用這個工具非常簡單,按照給定的工作條件選擇對應(yīng)需要的CODACA電感料號,再點擊“搜索”即完成計算并返回:參數(shù)對照表(同時最多對比4項型號),損耗對比,飽和電流曲線和溫升電流曲線,如下圖(Fig.4 )所示:


1666340418829566.png

Fig.4  CODACA在線電感損耗計算工具(示例)


02 線圈設(shè)計


在一般性的低壓功率轉(zhuǎn)換中,采用扁平銅線(flat wire)代替?zhèn)鹘y(tǒng)的圓銅線(round wire)就是近些年比較大的一個工程進(jìn)步;在高壓功率應(yīng)用上,安規(guī)絕緣要求對繞組使用的銅線材質(zhì)提出新的挑戰(zhàn);在高頻率開關(guān)電源上,如何在成本和性能之間取舍也是考驗設(shè)計能力的難題。


CODACA在大電流電感領(lǐng)域開發(fā)了大量不同封裝尺寸和結(jié)構(gòu)的產(chǎn)品(如下圖Fig.5),具有非常大的產(chǎn)品線優(yōu)勢,這一切和扁線工藝的提升離不開關(guān)系。


傳統(tǒng)的圓銅線在窗口利用率(window utilization)方面顯得捉襟見肘,同時因為AC響應(yīng)的趨膚效應(yīng)和渦流損耗的問題,使得它在大電流應(yīng)用上常常浪費(fèi)很多繞線空間而無法實現(xiàn)更高的功率密度也即最優(yōu)化空間電流容納率。扁平銅線能夠比較好地解決這些問題,但是扁平銅線的加工繞制過程中會遇到比如彎角的機(jī)械強(qiáng)度問題、絕緣層的保證問題以及加工繞制的機(jī)床磨具設(shè)計問題等。


23.jpg

Fig.5  CODACA大電流產(chǎn)品 – CPEX4141L系列


在這樣的產(chǎn)品設(shè)計上,繞線的難度比磁芯的選擇更考驗制造商的工程技術(shù)能力。但這還不是全部:在以鐵氧體(Ferrite)為磁芯的電感產(chǎn)品系列上,因為材質(zhì)內(nèi)部本身是經(jīng)過1300多度高溫?zé)Y(jié)(sintering)而成,無法填充分布式氣隙,因此不能承受較高的峰值電流;為了使電感能夠獲得更高的飽和電流(Isat),常常需要在加工組裝過程中人為制造氣隙,也即常說的“磨氣隙”或者結(jié)構(gòu)氣隙。


那么就會出現(xiàn)至少2個相當(dāng)具有智慧挑戰(zhàn)性的工程問題:氣隙開在什么位置和開出多少氣隙滿足飽和電流的要求,并且能夠做到最低的損耗。


很明顯,這個問題已經(jīng)不再是磁芯單獨(dú)的問題,而是完全要從產(chǎn)品的總體性能來考慮的問題。線圈繞組與氣隙的相對位置決定了耦合系數(shù),這會使得氣隙的有效率產(chǎn)生變化;而另外一方面,因為氣隙內(nèi)的磁通是自由穿透銅線繞組的,在渦流損耗方面又會產(chǎn)生明顯的差別,如何衡量,是需要累積相當(dāng)多的工程設(shè)計經(jīng)驗的,限于篇幅,此處就不再一一拓展了。


03 綜述


誠如以上這些細(xì)節(jié)的觀察(這里只是羅列了一少部分的問題),電感的設(shè)計雖然對磁芯的要求始終放在重要的位置,但是在實際的工程問題上,磁芯僅僅只是各種參考要素的一部分。為了設(shè)計實用的儲能型電感,也即實現(xiàn)足夠的飽和電流同時又能兼顧最低的損耗,往往更需要的是對磁芯更嚴(yán)謹(jǐn)?shù)臏y試測量方法以及依據(jù)磁芯材質(zhì)而設(shè)計的線圈繞組結(jié)構(gòu)。


來源:CODACA



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


基于車規(guī)級位置傳感器AS5172的車載應(yīng)用

讓電動汽車牽引逆變器設(shè)計更靈活,成本更優(yōu)的反激控制器

TI最新buck-boost 轉(zhuǎn)換器助力車載攝像頭POC方案

為個人電子產(chǎn)品有線/無線充電提供最優(yōu)解決方案

如何使用UCC217XX實現(xiàn)高精度的溫度采樣?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉