【導(dǎo)讀】衛(wèi)星通信系統(tǒng)是現(xiàn)代軍事領(lǐng)域非常重要的通信方式。直升機(jī)衛(wèi)星通信指的是直升機(jī)通過機(jī)載衛(wèi)星實現(xiàn)衛(wèi)星間的直接通信,并且能夠在衛(wèi)星和地面之間進(jìn)行信息傳輸和交換。本文詳細(xì)分析了直升機(jī)衛(wèi)星通信系統(tǒng)的關(guān)鍵技術(shù),并結(jié)合工程應(yīng)用對整個系統(tǒng)進(jìn)行全面的了解。
信息交換的種類有話音、數(shù)據(jù)和圖像視頻等。由于直升機(jī)本身的旋翼特點及操控特性,在設(shè)計衛(wèi)星通信系統(tǒng)時對微波天線的尺寸和重量都有嚴(yán)格的限制和要求,天線口徑、安裝位置和功放等硬性條件確定之后,在測試通信質(zhì)量時,如果通信效果不好,試驗工程師應(yīng)該從哪些方面進(jìn)行分析,查找問題的根源。本文從直升機(jī)衛(wèi)星通信系統(tǒng)的關(guān)鍵技術(shù)入手,結(jié)合工程應(yīng)用把問題一一展開。通過對系統(tǒng)全面的了解,對關(guān)鍵技術(shù)的確認(rèn),從而實現(xiàn)對系統(tǒng)的準(zhǔn)確測試。
1 機(jī)載衛(wèi)星通信系統(tǒng)工作原理
1.1 機(jī)載衛(wèi)星通信系統(tǒng)
衛(wèi)星通信( 簡稱衛(wèi)通) 具有頻帶寬、容量大、性能穩(wěn)定、成本與通信距離無關(guān)等優(yōu)點,成為現(xiàn)代通信的一種重要方式。機(jī)載衛(wèi)星通信系統(tǒng)分為固定翼機(jī)載衛(wèi)星通信系統(tǒng)和旋翼衛(wèi)星通信系統(tǒng)。
一個基本的衛(wèi)星通信系統(tǒng)至少包含兩個衛(wèi)通站和必要的衛(wèi)星資源。對于直升機(jī)衛(wèi)星通信系統(tǒng),只是在信道處理時增加抗旋翼遮擋模塊。
衛(wèi)星通信的工作頻段很多, 有UHF、S、C、Ku 和Ka等頻段。目前,國內(nèi)的主流衛(wèi)通頻段還是Ku 頻段,Ku 頻段常用的發(fā)射頻率范圍是14.0~14.5 GHz;接收頻率范圍是12.25~12.75 GHz,帶寬均為500 MHz,也是目前機(jī)載設(shè)備普遍選用的頻段。
1.2 系統(tǒng)工作原理
衛(wèi)星通信系統(tǒng)工作原理如圖1 所示。發(fā)送端輸入的信息經(jīng)過處理和編碼后,進(jìn)入調(diào)制器對載波(中頻)進(jìn)行調(diào)制;已調(diào)的中頻信號經(jīng)過上變頻器將頻率搬移至所需求的上行射頻頻率,最后經(jīng)過高功率放大器放大后,饋送到發(fā)送天線發(fā)往衛(wèi)星。衛(wèi)星轉(zhuǎn)發(fā)器對所接受的上行信號提供足夠的增益,還將上行頻率變換為下行頻率,之后衛(wèi)星發(fā)射天線將信號經(jīng)下行鏈路送至接受地球站。
地球站將接受的微弱信號送入低噪聲模塊和下變頻器。低噪聲模塊前端是具有低噪聲溫度的放大器,保證接收信號的質(zhì)量。下變頻、解調(diào)器和解碼與發(fā)送端的編碼、調(diào)制和上變頻相對應(yīng)。
圖1 衛(wèi)星通信系統(tǒng)基本工作原理
2 關(guān)鍵技術(shù)
2.1 姿態(tài)角提取及坐標(biāo)變換
在機(jī)載衛(wèi)星通信地球站工作過程中,天線伺服控制分系統(tǒng)的作用是使天線的波束中心自動、快速、準(zhǔn)確地對準(zhǔn)衛(wèi)星,從而使通信系統(tǒng)保持正常工作。伺服控制分系統(tǒng)要完成這一任務(wù),必須知道天線波束中心和所要對準(zhǔn)衛(wèi)星的方位角、仰角和極化角。
目前,國內(nèi)典型機(jī)載衛(wèi)星通信系統(tǒng)天伺系統(tǒng)是采用數(shù)字引導(dǎo)和自跟蹤功能相結(jié)合的機(jī)制,即通過捷聯(lián)慣導(dǎo)(IMU)提供的載機(jī)姿態(tài)信息解算天線指向的引導(dǎo)方式和通過天線饋源網(wǎng)絡(luò)和接收機(jī)提供的角差信號控制天線指向目標(biāo)的自跟蹤方式。首先,根據(jù)載機(jī)定位信息和預(yù)選設(shè)定的衛(wèi)星信息,運(yùn)用以下公式可以計算出大地仰角(E)及方位角(A)。
式中:φ1 為接收站經(jīng)度(度);φ2 為衛(wèi)星的軌位經(jīng)度(度);β 為接收站緯度(度)。
Re/(Re+H)=0.15,Re 為地球半徑(6 378 km),H 為同步衛(wèi)星距地球表面的高度(35 786 km)
由于繞定點轉(zhuǎn)動的兩個坐標(biāo)系之間的關(guān)系可以用方向余弦矩陣來表示,且載體坐標(biāo)系與地理坐標(biāo)系之間存在著姿態(tài)變化,所以,對天線穩(wěn)定系統(tǒng)來說,可以根據(jù)慣導(dǎo)提供的姿態(tài)信息(橫滾R、俯仰P 和航向H),實現(xiàn)從地理坐標(biāo)系到載機(jī)坐標(biāo)系的角度變換。具體變換如下:
式中[Dj] 為目標(biāo)在載體坐標(biāo)系中的坐標(biāo)矢量,[DM] 為目標(biāo)在大地坐標(biāo)系中的坐標(biāo)矢量,S 為矢量半徑。
MR、MP、MH 分別為3 個姿態(tài)變換矩陣。
信號丟失正常情況下不外乎兩種原因:一由于劇烈的外部作用天線伺服未能快速的克服隨動,導(dǎo)致天線指向偏離衛(wèi)星。二由于載機(jī)所處的環(huán)境陰影遮擋,如高樓、天橋、樹木、山脈等,此處系統(tǒng)的處理方法是,當(dāng)信號丟失后,默認(rèn)為由于陰影遮擋,先保持當(dāng)前的天線姿態(tài)一定的時間( 保持時間),在此過程中不斷進(jìn)行信號的采集和比較,如果在到達(dá)保持時間之前信號大于門限,則恢復(fù)跟蹤狀態(tài),如果保持時間達(dá)到后,信號仍然小于門限,則進(jìn)入搜索狀態(tài)。這種信號丟失的處理方式有利于鏈路的快速建立,特別是在載機(jī)快速的運(yùn)動過程中,偶爾出現(xiàn)遮擋物時( 樹木,高樓等) 的現(xiàn)實環(huán)境中。
此外,由于直升機(jī)的旋翼特點,在使用中除了要面臨極化控制、電波穩(wěn)定和可靠跟蹤等問題以外,最大的問題就是解決旋翼遮擋。目前,采用多次重傳機(jī)制的傳輸設(shè)計可以解決旋翼遮擋對接收的影響,重傳的次數(shù)越多,信息的可靠性就越高,但是會降低鏈路的傳輸效率。相比較而言,二次重傳機(jī)制可以滿足需要,而且信道利用率更高。從而使該系統(tǒng)實現(xiàn)以下功能:
1) 載機(jī)在航向和姿態(tài)不斷變化的情況下能夠正常工作。這就要求伺服系統(tǒng)具有非常寬的跟蹤范圍;
2) 系統(tǒng)對載機(jī)的搖擺有適應(yīng)能力,要求伺服系統(tǒng)對載機(jī)振動的隔離度要足夠大,以保 證天線主瓣指向衛(wèi)星;
3) 遮擋消失后伺服系統(tǒng)再捕能力。即設(shè)備穿過信號中斷地帶后,伺服系統(tǒng)能快速控制天線,立即恢復(fù)通信。
2.3 鏈路估算
在機(jī)載衛(wèi)星通信系統(tǒng)中,衛(wèi)星轉(zhuǎn)發(fā)器接收系統(tǒng)的品質(zhì)因數(shù)(G/T)、飽和通量密度(SFD)、等效全向輻射功率(EIRP)以及轉(zhuǎn)發(fā)器的輸入/ 輸出補(bǔ)償在鏈路計算和通信系統(tǒng)設(shè)計中起著關(guān)鍵性的作用,衛(wèi)星通信工程師應(yīng)對其有深入的了解。
地球站用戶(包括機(jī)載站)在使用衛(wèi)星資源時需要根據(jù)衛(wèi)星轉(zhuǎn)發(fā)器參數(shù)進(jìn)行鏈路預(yù)算及分析,預(yù)估上下行載波的C/N,計算求得系統(tǒng)能噪比Eb/N0,以便確定系統(tǒng)能夠保證信息傳輸質(zhì)量和滿足設(shè)計指標(biāo)的要求。具體計算公式如下:
衛(wèi)星鏈路總的載噪比:
上行鏈路的載噪比估算公式為:
下行鏈路的載噪比估算公式為:
故鏈路的能噪比估算公式為:
[page]
3 工程測試方案設(shè)計
衛(wèi)星通信系統(tǒng)的設(shè)計通常要求高概率可靠度( 例如99.99%),這就要求各種衰減引起系統(tǒng)的中斷概率不超過0.01%,為了驗證系統(tǒng)的這種性能,對測試方法的設(shè)計以及處理方法具有較高的要求。某機(jī)載衛(wèi)星通信系統(tǒng)在進(jìn)行工程測試驗證時,基于關(guān)鍵技術(shù)的考慮重點設(shè)計以下測試項目,以達(dá)到對系統(tǒng)考核驗證的目的。
1) 大機(jī)動及大速度飛行。在機(jī)載衛(wèi)星通信系統(tǒng)中,天線跟蹤是關(guān)鍵技術(shù),當(dāng)載機(jī)在高速運(yùn)動、爬升/ 下降和轉(zhuǎn)彎條件下,天線伺服控制系統(tǒng)使天線波束始終精確對準(zhǔn)衛(wèi)星,因此,通過大機(jī)動飛行達(dá)到對系統(tǒng)伺服系統(tǒng)的跟蹤性以及穩(wěn)定性的測試目的。
2) 高緯度地區(qū)及降雨環(huán)境飛行。地面天線的仰角極低時,地面熱噪聲將進(jìn)入天線的近旁瓣甚至主瓣,從而提高天線噪聲 ,降低地面系統(tǒng)的G/T 值,天線仰角低,從地球站到衛(wèi)星的傳輸距離長,載波的自由空間損耗也較大。仰角低時,載波穿越降雨區(qū)的距離也較長,Ku 頻段載波在降雨時所受的衰耗和噪聲增量將相應(yīng)增大。這些因素都可能抵消掉部分的轉(zhuǎn)發(fā)器EIRP。因此,通過高緯度地區(qū)的飛行測試以及降雨環(huán)境下的系統(tǒng)測試實現(xiàn)對系統(tǒng)低仰角及降雨損耗的考核驗證目的。
3) 信號較弱地區(qū)飛行。同一衛(wèi)星資源在不同區(qū)域的等效全向輻射功率和品質(zhì)因素是有差異的,這將直接影響鏈路的能噪比,即鏈路質(zhì)量。
以某機(jī)載衛(wèi)星通信系統(tǒng)為例,分別在南京地區(qū)和高原地區(qū)進(jìn)行測試評估,中心站置于北京,衛(wèi)星資源參數(shù)(軌道位置東經(jīng)87.5°,轉(zhuǎn)發(fā)器帶寬BTs=36 MHz,轉(zhuǎn)發(fā)器輸入補(bǔ)償10 dB 和輸出補(bǔ)償為4 dB)。試驗結(jié)果表明,南京地區(qū)的鏈路通信質(zhì)量明顯優(yōu)于高原地區(qū),且高原地區(qū)的圖像傳輸存在較嚴(yán)重的丟包現(xiàn)象。具體分析如表1 所示。
表1 不同地區(qū)衛(wèi)星轉(zhuǎn)發(fā)器參數(shù)與鏈路質(zhì)量對比分析
從表1 可以看出,衛(wèi)星轉(zhuǎn)發(fā)器在南京地區(qū)的等效全向輻射功率和品質(zhì)因素優(yōu)于高原地區(qū),通過鏈路計算得出的能噪比南京地區(qū)優(yōu)于高原地區(qū)。雖然系統(tǒng)設(shè)計時,調(diào)制解調(diào)器在能噪比為5.0 dB 時能夠保證信息傳輸質(zhì)量,但是,考慮雨衰裕量等因素,在信號較弱地區(qū)仍然需要調(diào)整設(shè)備發(fā)射功率或天線尺寸,方能滿足較好的通信質(zhì)量,這與工程實際應(yīng)用完全吻合。
4 結(jié)論
在機(jī)載衛(wèi)星通信系統(tǒng)的工程測試過程中,對直升機(jī)衛(wèi)星通信系統(tǒng)的關(guān)鍵技術(shù)進(jìn)行了較為深入的研究,找出了測試設(shè)計過程中的關(guān)鍵技術(shù)點,通過設(shè)計測試方案驗證了某型機(jī)載衛(wèi)星通信系統(tǒng)的通信質(zhì)量,并與理論計算進(jìn)行了對比分析,達(dá)到了理論與實踐相結(jié)合的試驗?zāi)康?。由于國?nèi)機(jī)載衛(wèi)星通信應(yīng)用尚處于初步階段,對于系統(tǒng)的測試更是出于摸索階段,對衛(wèi)星通信系統(tǒng)關(guān)鍵技術(shù)的研究可以為后續(xù)型號系統(tǒng)的測試與性能評估提供相應(yīng)的技術(shù)參考和借鑒。
相關(guān)閱讀:
“軍事”解析:飛機(jī)數(shù)據(jù)總線的構(gòu)成及特性分析
熟透語音識別技術(shù),軍事斗爭領(lǐng)域你就是"王"
國防最前沿:電磁環(huán)境自動測試,衛(wèi)星地球站接招吧!