你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文
如何用網(wǎng)絡(luò)分析儀測(cè)量低頻率響應(yīng)
發(fā)布時(shí)間:2021-09-10 來(lái)源:是德科技 責(zé)任編輯:wenwei
【導(dǎo)讀】測(cè)量元器件和電路的頻率響應(yīng)特性是確保電子設(shè)備性能的關(guān)鍵步驟。汽車、醫(yī)療設(shè)備、航空航天與國(guó)防行業(yè)對(duì)電子設(shè)備的可靠性要求極高,因此在從低頻至高頻的各種頻率范圍內(nèi)對(duì)各類元器件和電路進(jìn)行測(cè)量非常必要。在這些應(yīng)用中,低頻網(wǎng)絡(luò)分析儀在確保低頻模擬電路器件(例如傳感器系統(tǒng)和電源部件)實(shí)現(xiàn)穩(wěn)定可靠工作方面具有重要作用。為此,您需要在了解射頻網(wǎng)絡(luò)分析(S參數(shù)測(cè)量)的同時(shí),也需要很好地對(duì)低頻網(wǎng)絡(luò)分析(增益相位測(cè)量)的應(yīng)用有所了解。
本應(yīng)用指南通過(guò)對(duì)網(wǎng)絡(luò)分析儀的介紹,闡述了有關(guān)低頻網(wǎng)絡(luò)分析的基礎(chǔ)原理。我們?cè)诖酥饕榻B簡(jiǎn)單的低頻 2 端口器件測(cè)量,以及高阻抗探測(cè)技術(shù)和大衰減測(cè)量等相關(guān)主題。
50 Ω 被測(cè)件的基本測(cè)量配置
首先,針對(duì)使用低頻網(wǎng)絡(luò)分析儀測(cè)量 2 端口器件的傳輸特性的配置,我們簡(jiǎn)要介紹一下典型的被測(cè)器件的連接方法。第一種情況是測(cè)量50 Ω 的器件的傳輸響應(yīng)特性,例如濾波器和電纜。圖2顯示的是使用儀表的增益相位測(cè)試端口進(jìn)行此類測(cè)試的配置情況。R通道接收機(jī)(VR)用于測(cè)量在50 Ω 系統(tǒng)阻抗的激勵(lì)源的輸出電壓(50 Ω 傳輸線輸入信號(hào)的電壓),T通道接收機(jī)(VT)用于測(cè)量經(jīng)過(guò)被測(cè)器件傳輸之后輸出信號(hào)的電壓,然后儀表計(jì)算測(cè)量到的電壓比(VT/VR),即可得到傳輸系數(shù)S21。
圖3是用儀表的S參數(shù)測(cè)試端口進(jìn)行測(cè)量的配置。在S參數(shù)測(cè)試端口的后邊有多個(gè)內(nèi)置的定向橋,因此無(wú)需使用圖2中從外部接入測(cè)量配置中的功率分離器。大部分情況下,S參數(shù)測(cè)試端口用于測(cè)量50 Ω 的器件的傳輸響應(yīng)特性。是德科技:電容測(cè)量原理 - 測(cè)試參數(shù)第八章圖3是用儀表的S參數(shù)測(cè)試端口進(jìn)行測(cè)量的配置。在S參數(shù)測(cè)試端口的后邊有多個(gè)內(nèi)置的定向橋,因此無(wú)需使用圖2中從外部接入測(cè)量配置中的功率分離器。大部分情況下,S參數(shù)測(cè)試端口用于測(cè)量50 Ω 的器件的傳輸響應(yīng)特性。
對(duì)于大部分50 Ω 器件的傳輸響應(yīng)特性的測(cè)試情況,使用儀表的S參數(shù)測(cè)試端口就可以了。但是,對(duì)于大衰減器件的測(cè)量,例如測(cè)量DC - DC轉(zhuǎn)換器和大電容旁路電容器的只有毫歐量級(jí)的阻抗時(shí),通常需要采用分流直通(Shunt-Thru)的測(cè)量方法,這種傳輸響應(yīng)特性的測(cè)量就要使用儀表的增益相位測(cè)試端口而不是S參數(shù)測(cè)試端口進(jìn)行測(cè)量。在這種情況下,增益相位測(cè)試端口接收機(jī)的半浮地結(jié)構(gòu)可以避免低頻范圍的測(cè)量誤差,該誤差是由激勵(lì)號(hào)源與接收機(jī)之間測(cè)試電纜的接地環(huán)路引起的(稍后會(huì)有詳細(xì)介紹)。
圖2 使用增益相位測(cè)試端囗測(cè)量50 Ω被測(cè)器件傳輸系數(shù)的測(cè)量配置
圖3 使用S參數(shù)測(cè)試端口測(cè)量 50 Ω 被測(cè)器件傳輸系數(shù)的測(cè)量配置
基本測(cè)量配置
非50 Ω 被測(cè)件,實(shí)例1
低頻2端口器件通常都是非50 Ω 的阻抗,低頻放大器電路就是一個(gè)最典型的例子。圖4是用增益相位測(cè)試端口測(cè)量低頻放大器的頻率響應(yīng)特性的測(cè)量配置實(shí)例。被測(cè)器件的輸入阻抗很高,輸出端口接的是一個(gè)非50 Ω 的負(fù)載ZL。根據(jù)實(shí)際應(yīng)用的要求,負(fù)載阻抗ZL可以是電阻性負(fù)載,也可以是電抗性負(fù)載。
待測(cè)參數(shù)是從被測(cè)器件輸入端口到輸出端口的電壓傳遞函數(shù),即/out//in。與圖2和圖3顯示的測(cè)量50 Ω 器件的傳輸系數(shù)所不同的是,R通道接收機(jī)(VR)使用高阻抗探測(cè)方式直接測(cè)量被測(cè)器件輸入阻抗Zin上的交流電壓,而不是測(cè)量50 Ω 系統(tǒng)阻抗上的電壓。使用高阻抗探測(cè)可以在不影響被測(cè)器件的負(fù)載條件下測(cè)量輸出電壓(Vout)。
根據(jù)所要求的最高測(cè)量頻率、探頭的輸入阻抗、探頭的輸入電容等不同的情況(會(huì)在后邊進(jìn)行介紹),可以用同軸測(cè)量電纜或10:1的無(wú)源探頭把儀表的高阻抗測(cè)量接收機(jī)與被測(cè)器件連接起來(lái)。使用同軸測(cè)試電纜時(shí),在R通道探測(cè)點(diǎn)上可以使用一個(gè)T型連接器。為了補(bǔ)償兩個(gè)探頭/測(cè)試電纜之間的頻率響應(yīng)和相位誤差,需要做直通響應(yīng)校準(zhǔn),方法是把與T通道連接的探頭點(diǎn)在TPI測(cè)試點(diǎn)上,然后進(jìn)行測(cè)量。
圖4 使用增益相位端囗測(cè)量放大器的配置(最高測(cè)量量頻率可達(dá) 30 MHz)
如果要在30 MHz以上的測(cè)量頻率上測(cè)量放大器的頻率響應(yīng),或者需要使用電容極小的探頭對(duì)放大器進(jìn)行測(cè)量,那就要用有源探頭在儀表的S參數(shù)測(cè)試端口上進(jìn)行測(cè)量,如圖5所示。與圖4的配置所不同的是,在這里進(jìn)行比值測(cè)量是以儀表內(nèi)R1接收機(jī)的50 Ω 阻抗為參考,并且必須要在TP1測(cè)試點(diǎn)上進(jìn)行直通響應(yīng)校準(zhǔn),才能正確地測(cè)量電壓傳遞函數(shù)/out//in。如果不進(jìn)行直通響應(yīng)校準(zhǔn)(或者沒(méi)有連接饋通件,如圖5所示),測(cè)得的增益會(huì)比正確值高出6 dB,原因是內(nèi)部50 Ω 參考接收機(jī)測(cè)得的交流電壓僅為Vin的一半。
在幾十MHz以上的高頻范圍內(nèi)進(jìn)行測(cè)量時(shí),將50 Ω 饋通件連接至被測(cè)器件的輸入端口可以防止由儀表50 Ω 阻抗和被測(cè)器件的高輸入阻抗間的阻抗失配所引發(fā)的駐波。但是,連接饋通件會(huì)在測(cè)量電纜的在中心導(dǎo)體與接地之間形成分流信號(hào)的路徑,它可能會(huì)在進(jìn)行大衰減器的測(cè)量(例如CMRR和PSRR)時(shí)產(chǎn)生與接地環(huán)路相關(guān)的測(cè)量誤差,因此必須引起注意。如果嚴(yán)格考慮的話,最好不要連接饋通。
圖5 使用S參數(shù)測(cè)試端囗和有源探頭測(cè)量大器的配置(最高測(cè)量頻率可達(dá) 30 MHz)
非50 Ω被測(cè)件,實(shí)例2
圖6和圖7是測(cè)量2端口器件的配置實(shí)例,器件輸入與輸出阻抗的范圍是數(shù)百 Ω 至1或2 kΩ 。典型應(yīng)用為低頻無(wú)源濾波器,例如陶瓷濾波器和LC濾波器。在這些實(shí)例中,只需連接一個(gè)串聯(lián)電阻即可實(shí)現(xiàn)阻抗匹配。圖6是使用增益相位測(cè)試端口進(jìn)行測(cè)試的配置方式,比值VT/VR就是1 kΩ系統(tǒng)阻抗的傳輸系數(shù)。
在有些濾波器的測(cè)量中,需要與負(fù)載電阻并聯(lián)一個(gè)負(fù)載電容CL再進(jìn)行測(cè)試。為了防止測(cè)量中對(duì)濾波器的特征參數(shù)產(chǎn)生影響,高阻抗探頭的輸入電容必須極低。因此,高阻抗T通道接收機(jī)應(yīng)連接輸入電容約為10 pF的 10:1無(wú)源探頭。否則,如果被測(cè)器件對(duì)電容性負(fù)載很敏感的話,就應(yīng)該用有源探頭在儀表的S參數(shù)測(cè)試端口上進(jìn)行測(cè)量,請(qǐng)看圖5所示的測(cè)量放大器的配置。
使用T通道的50 Ω 內(nèi)阻而不用高阻抗探頭進(jìn)行測(cè)量,并且按照?qǐng)D7所示連接另一個(gè)匹配電阻器,可以得到等效的測(cè)量結(jié)果。這種配置更為簡(jiǎn)單,優(yōu)點(diǎn)是在T通道內(nèi)不會(huì)引入探頭的電容。但是,此配置不適合測(cè)量高抑制比的濾波器,因?yàn)榇?lián)匹配電阻會(huì)降低測(cè)量的動(dòng)態(tài)范圍。在這種情況下,動(dòng)態(tài)范圍會(huì)下降20*Log(50/1000)=26 dB。
圖6 使用高阻抗探頭膊量無(wú)源中頻濾波器的測(cè)量配置(被測(cè)器件對(duì)電容性負(fù)載不是很敏感的情況)
圖7 使用儀表50 Ω 輸入端口測(cè)量無(wú)源中頻濾波器的測(cè)量配置
使用探頭在電路板上直接進(jìn)行測(cè)量
第二個(gè)應(yīng)用的例子是使用探頭直接在電路板上進(jìn)行測(cè)量一測(cè)量被測(cè)電路板上兩個(gè)測(cè)試點(diǎn)之間的電路或器件的頻率響應(yīng)特性。圖8顯示的是如何使用增益相位測(cè)試端口測(cè)量電路模塊2的頻率響應(yīng)特性。通過(guò)使用兩個(gè)高阻抗探頭在TP1和TP2測(cè)試點(diǎn)上進(jìn)行探測(cè),可直接測(cè)量電路模塊2的頻率響應(yīng)特性。
與圖4中測(cè)量放大器的配置相似,在把儀表的高阻抗接收機(jī)與被測(cè)器件連接時(shí),應(yīng)根據(jù)最高測(cè)試頻率、探頭的輸入阻抗和探頭的輸入電容等情況,適當(dāng)?shù)剡x擇使用同軸測(cè)試電纜或10:1 無(wú)源探頭進(jìn)行連接。
圖8 使用增益相位測(cè)試端囗和兩個(gè)高阻抗探頭對(duì)電路板上的被測(cè)器件行測(cè)量(最高測(cè)試頻率達(dá) 30 MHz)
E5061B矢量網(wǎng)絡(luò)分析儀增益相位測(cè)試端口的最高測(cè)試頻率為30 MHz。如果使用探頭對(duì)電路板上的器件進(jìn)行測(cè)量的頻率超過(guò)了30 MHz,解決辦法是把一個(gè)有源探頭連接在S參數(shù)測(cè)試端口上,然后按照?qǐng)D9所示分兩步完成測(cè)量。
首先,把有源探頭點(diǎn)在TP1測(cè)量點(diǎn)上測(cè)量電路模塊1的響應(yīng)特性,并把測(cè)量結(jié)果存為寄存器軌跡。然后把探頭點(diǎn)在TP2測(cè)量點(diǎn)上測(cè)量電路模塊1和2的整體響應(yīng)響應(yīng)特性,把測(cè)量結(jié)果存為數(shù)據(jù)軌跡。最后我們可以用儀表進(jìn)行數(shù)據(jù)軌跡/寄存器軌跡的運(yùn)算功能得出電路模塊2的頻率響應(yīng)特性。
如果先把探頭點(diǎn)在TP1測(cè)量點(diǎn)上做直通響應(yīng)校準(zhǔn),然后再把探頭點(diǎn)在TP2測(cè)量點(diǎn)上進(jìn)行測(cè)量,這樣也可能得到等效的測(cè)量結(jié)果。這樣做無(wú)需使用軌跡的運(yùn)算功能,直接就可以得出電路模塊2相對(duì)于TP1參考點(diǎn)的響應(yīng)特性。
如果被測(cè)器件在TP2點(diǎn)上的輸出特征對(duì)TP1點(diǎn)的電容很敏感的話,第二步測(cè)量中被測(cè)器件的條件將會(huì)與第一步測(cè)量略有不同,由這兩步測(cè)量結(jié)果的計(jì)算而得到的最終測(cè)量結(jié)果中會(huì)因此而有誤差。為了最大限度地減少測(cè)量誤差,如圖9所示,僅僅在進(jìn)行第二步測(cè)量時(shí),需要連接一個(gè)電容值與與有源探頭的輸入電容大致相當(dāng)?shù)奶摂M電容C2。采用這種電容補(bǔ)償方式的應(yīng)用之一是使用上述兩步測(cè)量法測(cè)量高速運(yùn)算放大器的相位裕量,在后面我們會(huì)介紹一個(gè)實(shí)際測(cè)量的例子。
圖9 使用一個(gè)高阻抗探頭測(cè)量電路板內(nèi)的器件(最高測(cè)試頻率達(dá) 30 MHz)
低頻測(cè)量的中頻帶寬(IFBW)設(shè)置
在測(cè)量中如何設(shè)置 IFBW(中頻帶寬)是許多低頻網(wǎng)絡(luò)分析儀的用戶首先遇到的常見(jiàn)問(wèn)題之一。進(jìn)行高頻測(cè)量時(shí)一般使用較寬的IFBW以獲得更快的掃描速度,但低頻測(cè)量需要用較窄的IFBW,來(lái)以避免主要由 LO饋通引起的測(cè)量誤差。以測(cè)量一個(gè)大衰減的器件為例,假設(shè)測(cè)量的起始頻率為1 kHz,IFBW為3 kHz,通過(guò)被測(cè)器件衰減的小信號(hào)會(huì)上變頻到一個(gè)中頻(IF)信號(hào)上,并能夠通過(guò)接收機(jī)的中頻濾波器。這時(shí)就會(huì)出現(xiàn)一個(gè)問(wèn)題,如圖10所示,本地振蕩器的泄露信號(hào)(LO饋通)的頻率也是非常接近中頻頻率的,它也能通過(guò)中頻濾波器,這會(huì)造成不真實(shí)的頻率響應(yīng)測(cè)量結(jié)果。
圖11顯示的是一個(gè)用E5061B增益相位測(cè)試端口測(cè)量60 dB衰減器的測(cè)量結(jié)果,測(cè)量信號(hào)的功率為-10dBm,測(cè)量起始頻率為1kHz, IFBW設(shè)為3kHz, T測(cè)量通道和R測(cè)量通道的衰減器設(shè)置為20dB。您可以在所顯示的測(cè)量結(jié)果中看到,起始頻率附近出現(xiàn)了由LO饋通導(dǎo)致的錯(cuò)誤測(cè)量響應(yīng)。即便是在測(cè)量像低通濾波器這樣的器件,測(cè)得的射頻信號(hào)的功率較高時(shí),也會(huì)有類似的情況出現(xiàn)。
在這種情況下,在起始頻率附近測(cè)得的的軌跡會(huì)因與射頻信號(hào)頻率極為接近的LO饋通的干擾而變得不穩(wěn)定。為了避免這些問(wèn)題,可將IFBW設(shè)置為遠(yuǎn)低于起始頻率的值(例如,設(shè)定為起始頻率的1/5),或者使用IFBW AUTO(中頻帶寬自動(dòng))的模式 一 儀表在進(jìn)行對(duì)數(shù)掃描時(shí)頻率每變化十倍就由窄至寬自動(dòng)設(shè)置IFBW的值,這樣可以使總的掃描時(shí)間不會(huì)太長(zhǎng)。E5061B的IFBW AUTO模式隨著掃描頻率的增加把各個(gè)IFBW的值設(shè)定為每十倍頻程起始頻率的五分之一。
圖10 LO饋通導(dǎo)致的測(cè)量誤差
圖11 對(duì)60 dB衰減器進(jìn)行測(cè)量的結(jié)果(開(kāi)始頻率 =1 kHz, IFBW=3 kHz 和AUTO)
使用高阻抗探頭的測(cè)量方法
采用恰當(dāng)?shù)奶綔y(cè)方法對(duì)于精確地使用高阻探頭進(jìn)行測(cè)量是十分重要的,要特別留意的地方是探頭的輸入電容。探頭上較大的輸入電容在高頻測(cè)量條件下會(huì)降低探頭的輸入阻抗。例如,如果探頭尖的輸入電容(Cin)為100pF,在測(cè)量頻率為100k Hz時(shí)它的輸入阻抗為15.9 k Ω (1/(2*pi*f*Cin)),仍為高阻抗。但是測(cè)量頻率若升至10 MHz,它的輸入阻抗就成了159 Ω ,對(duì)很多測(cè)量的情況來(lái)說(shuō),這樣的阻抗是不夠高的。另外,探頭的輸入電容太高還會(huì)影響對(duì)電容性負(fù)載比較靈敏的器件的測(cè)量結(jié)果,例如無(wú)源中頻濾波器、諧振電路和放大器的某些由電容條件決定的參數(shù)(例如放大器的相位裕量)。對(duì)于這些應(yīng)用,如果網(wǎng)絡(luò)分析儀有高阻抗輸入端口(例如E5061B),則有必要使用低輸入電容的探測(cè)方法。在測(cè)量時(shí)連接DUT的最簡(jiǎn)單的方法就是使用同軸電纜(例如一端是測(cè)試線夾的BNC電纜)或1:1的無(wú)源探頭把DUT連接到儀表的高阻抗輸入端口上,如圖12所示。
如果測(cè)量頻率范圍低于1 MHz,并且作為電容負(fù)載的探頭的輸入電容不會(huì)影響到被測(cè)器件,該方法是一個(gè)好的解決方案。與10:1的無(wú)源探頭相比,這種1:1 的探測(cè)方法不會(huì)降低測(cè)量的動(dòng)態(tài)范圍,即便是測(cè)量很小的信號(hào),也可以有良好的信噪比(SNR)。該方法的缺點(diǎn)是,由于測(cè)試電纜電容與高阻抗輸入端口電容的疊加,探頭的輸入電容會(huì)較高。即使采用很短的電纜,電纜末端的輸入電容也會(huì)達(dá)到幾十個(gè)pF。因此,該方法不適合測(cè)量頻率超過(guò)1MHz的高頻測(cè)量,也不適用于對(duì)電容性負(fù)載比較敏感的測(cè)量。
圖 12 同軸測(cè)試電纜或1:1無(wú)源探頭
如圖13所示,用示波器常用的10:1無(wú)源探頭可以降低探頭輸入電容,這種探頭專門為與高阻抗輸入端口一起使用而設(shè)計(jì)。10:1無(wú)源探頭末端的輸入電容一般約為10pF左右,這使它能夠用于更高測(cè)量頻率的探測(cè)。與通用示波器應(yīng)用類似,如果儀表內(nèi)有高輸入阻抗測(cè)量端口的話,使用10:1無(wú)源探頭進(jìn)行高阻抗探測(cè)是常見(jiàn)的方式。它的缺點(diǎn)是測(cè)量動(dòng)態(tài)范圍會(huì)因受到探頭10:1衰減的影響而降低20dB。因此,該方法不適用于測(cè)量極小信號(hào)的情況。
有源探頭有很高的輸入電阻和極小的輸入電容,而且因?yàn)樵谔筋^的端口附近有有源電路部件,因此它對(duì)被測(cè)信號(hào)不會(huì)進(jìn)行衰減,如圖14所示。例如,41800A有源探頭(從直流至50 Ω MHz)的輸入電阻//電容分別是100 k Ω //3pF。另外,您可以通過(guò)在探頭末端連接一個(gè)10:1的適配器,使得探頭的阻抗和電容可以達(dá)到1 M Ω //1.5 pF, 不過(guò)這樣會(huì)使動(dòng)態(tài)范圍降低20 dB。如果您需要在超過(guò)30 MHz的高頻率范圍內(nèi)進(jìn)行測(cè)量,或是被測(cè)器件對(duì)電容性負(fù)載極為敏感,我們推薦您選擇有源探頭。
圖13 10:1無(wú)源探頭
圖14 有源探頭
做比值測(cè)量時(shí)對(duì)信號(hào)的分離
為了測(cè)量50 Ω 器件的傳輸系數(shù),例如系統(tǒng)阻抗Z0 = 50 Ω 的無(wú)源濾波器,或特征阻抗Z0為其它值的器件的傳輸系數(shù)(需使用匹配電路對(duì)系統(tǒng)阻抗進(jìn)行轉(zhuǎn)換), 需要把儀表激勵(lì)源輸出的信號(hào)分離開(kāi)分別送給儀表50 Ω 的R通道測(cè)量接收機(jī)(參考信號(hào))和被測(cè)器件的輸入端口。如果所使用的激勵(lì)源的輸出端口沒(méi)有內(nèi)置的信號(hào)分離器件(例如:內(nèi)置功率分離器或內(nèi)置定向橋),則需要使用恰當(dāng)?shù)姆蛛x器件在儀表的外部完成信號(hào)的分離。
E5061B-3L5 有S參數(shù)測(cè)試端口,對(duì)大部分50 Ω 器件的傳輸特性的測(cè)量,都可以使用S參數(shù)測(cè)量端口而無(wú)需使用外部的信號(hào)分離器件。但在有些需要使用儀表的增益相位測(cè)試端口測(cè)量傳輸系數(shù)的應(yīng)用中,例如用分流直通法 (Shunt-thru) 測(cè)量DC-DC轉(zhuǎn)換器的輸出阻抗,就有必要采用外部信號(hào)分離器件。
對(duì)于以測(cè)量線性器件為主的通用網(wǎng)絡(luò)分析來(lái)說(shuō),對(duì)信號(hào)分離器件最重要的要求是能夠在進(jìn)行比值測(cè)量時(shí)保證有50 Ω 的激勵(lì)源輸出阻抗(源匹配)。最常見(jiàn)也是最被推薦使用的信號(hào)分離器件是雙電阻型功率分離器,頻率范圍從DC至GHz, 能夠在比值測(cè)量中保證有極好的源輸出阻抗。
圖15-a所示的使用功率分離器完成的比值測(cè)量等同于圖15-b完成的兩個(gè)測(cè)量一圖15-a上分支點(diǎn)的交流電壓(Vo)可以視為圖15-b上的兩個(gè)虛擬激勵(lì)源電壓。如圖所示,R通道和T通道測(cè)量中的等效源輸出阻抗值為50 Ω ,這通常是50 Ω 網(wǎng)絡(luò)測(cè)量的理想源匹配條件。
請(qǐng)注意,雙電阻型功率分離器僅適用于比率測(cè)量,不適用于50 Ω 系統(tǒng)阻抗的絕對(duì)電壓測(cè)量,原因在于從被測(cè)器件方向看過(guò)去分離器的物理輸出阻抗為83.3 Ω, 而不是50 Ω。
圖15 使用功率分離器對(duì)50 Ω 的器件行比值測(cè)量
除了功率分離器之外,另外可以分離信號(hào)的器件是低頻定向耦合器或無(wú)功功率分配器(與變壓器交流耦合),它們的兩個(gè)輸出端口之間有較高的隔離度(25或30dB)。(minicircuits.com)生產(chǎn)的ZFDC-15-6定向耦合器(0.03至35 MHz, BNC接口)或ZFSC功率分配器(0.002至60 MHz,BNC接口)就是其中的代表產(chǎn)品。盡管它們的最高頻率只有30 MHz或60 MHz左右,低頻頻率只能到幾kHz或數(shù)十kHz,但在頻率范圍能夠滿足應(yīng)用要求的時(shí)候,這些器件都是理想的選擇。因?yàn)樗鼈儍蓚€(gè)輸出端口之間的高隔離度,被測(cè)件輸入端口的反射信號(hào)不會(huì)直接進(jìn)入R通道接收機(jī),因此不會(huì)影響到R通道的測(cè)量結(jié)果。
如果在比值測(cè)量中用上述器件作為分離信號(hào)的器件,它們的等效源匹配的效果會(huì)不如使用雙電阻型功率分離器的效果,為了改善源匹配的效果,有時(shí)有必要在其輸出端口與被測(cè)器件之間連接一個(gè)衰減器(6 dB左右)。這種信號(hào)分離器件相對(duì)于功率分離器的優(yōu)勢(shì)在于其絕對(duì)源輸出阻抗(端口匹配)為50 Ω ,這使您能在50 Ω 的環(huán)境下進(jìn)行絕對(duì)電壓測(cè)量,雖然一般情況下在低頻測(cè)量的應(yīng)用中進(jìn)行電壓的絕對(duì)測(cè)量不像在射頻應(yīng)用中進(jìn)行絕對(duì)值測(cè)量那么有意義。
由三個(gè)電阻組成的電阻功率分配器的三個(gè)電阻臂的電阻值為Z0/3,這種功率分離器不適用于比值測(cè)量。如果我們將三電阻型電阻功率分配器的分支點(diǎn)作為虛擬信號(hào)源(與雙電阻型功率分離器類似), 那么其等效源輸出阻抗就不是50 Ω ,而是50/3=16.7 Ω ,而且輸出端口之間的隔離度也較低(只有6dB)。除非被測(cè)器件的輸入阻抗精確為50 Ω ,否則在比值測(cè)量中使用三電阻型功率分配器會(huì)產(chǎn)生嚴(yán)重的測(cè)量誤差。
圖16 定向耦合器/電橋
圖17 電阻功率分配器(不適用于比值測(cè)量)
在低頻范圍測(cè)量大衰減器件
測(cè)量誤差
使用傳統(tǒng)低頻網(wǎng)絡(luò)分析儀測(cè)量大衰減的器件,當(dāng)測(cè)量頻率在100 KHz以下時(shí),測(cè)量結(jié)果很可能會(huì)受到與測(cè)試電纜接地環(huán)路相關(guān)的誤差的影響。這些誤差在測(cè)量低頻放大器的CMRR和PSRR等指標(biāo)時(shí)會(huì)很明顯。最嚴(yán)重的問(wèn)題是由測(cè)量電纜的屏蔽電阻(金屬編織層的電阻)引起的誤差,該誤差在100 kHz以下的低頻范圍內(nèi)是不容忽視的。
圖18是使用網(wǎng)絡(luò)分析儀測(cè)量大衰減器件的情況。當(dāng)被測(cè)器件的衰減值非常高時(shí),被測(cè)器件的輸出電壓Vo將非常小。在理想的情況下,測(cè)量接收機(jī)VT測(cè)到的AC電壓也應(yīng)該是Vo。
但是,在低頻范圍內(nèi),外部共模噪聲很可能會(huì)進(jìn)入激勵(lì)源與接收機(jī)之間的測(cè)試電纜的接地環(huán)路,如圖18所示。在測(cè)量電纜外部屏蔽層電阻Rc2上的電壓降為Vc2。由于被測(cè)電壓Vo本身就是很小的一個(gè)值,因此電壓Vc2會(huì)引起接收機(jī)VT的電壓測(cè)量誤差,這樣最終測(cè)得的衰減值將是錯(cuò)誤的。
根據(jù)Vo和Vc2之間不同的相位關(guān)系,實(shí)際測(cè)量得到的衰減值可能會(huì)高于或低于被測(cè)器件真實(shí)的衰減值?;蛘咴谟行┣闆r下,在測(cè)量結(jié)果的軌跡線上會(huì)出現(xiàn)一個(gè)比較明顯的的下陷。
圖18 由電纜屏蔽層電阻引起的測(cè)量誤差(1)
測(cè)試電纜的接地環(huán)路會(huì)在低頻測(cè)量范圍內(nèi)引起另外的測(cè)量誤差。您可以設(shè)想被測(cè)器件有一個(gè)分流信號(hào)路徑,其阻抗Zsh非常小的情況,典型例子就是用分流直通 (Shunt-thru) 方法測(cè)量供電網(wǎng)絡(luò)(Power Distribution Network)上的元器件在低頻頻段的毫歐量級(jí)的阻抗,例如直流一直流轉(zhuǎn)換器和大容值旁路電容器的阻抗等。
理想情況下,激勵(lì)源的信號(hào)在經(jīng)過(guò)被測(cè)器件之后應(yīng)該通過(guò)測(cè)量電纜的外部屏蔽層金屬返回到激勵(lì)源一側(cè)。
但是,在低頻測(cè)試時(shí),激勵(lì)源的電流也會(huì)流入到T通道測(cè)量接收機(jī)一側(cè)測(cè)試電纜的屏蔽層中。與共模噪聲的現(xiàn)象相似,流入T通道測(cè)量電纜屏蔽層的激勵(lì)源電流會(huì)在測(cè)量電纜外屏蔽層的電阻Rc2上產(chǎn)生電壓降Vc2,這會(huì)在接收機(jī)VT的測(cè)量結(jié)果中造成誤差。在這種情況下,測(cè)得的衰減值將大于被測(cè)件的真實(shí)衰減值。
需要注意的是,這些與測(cè)試電纜接地環(huán)路相關(guān)的測(cè)量誤差只會(huì)在測(cè)量頻率低于100 kHz的范圍內(nèi)出現(xiàn)。在較高的測(cè)量頻率范圍內(nèi),同軸測(cè)試電纜的電感起到了共模扼流器(巴侖)的作用,使得引起測(cè)量結(jié)果誤差的電流不會(huì)通過(guò)VT接收機(jī)一側(cè)測(cè)量電纜的屏蔽層。
圖19 由電纜的屏蔽層電阻引起的測(cè)量誤差(2)
在低頻范圍內(nèi)測(cè)量大衰減器件
傳統(tǒng)解決方案
目前有幾種技術(shù)可以最大程度地降低前面所述的測(cè)量誤差。傳統(tǒng)上最常用的方法是把小磁環(huán)套在測(cè)試電纜上或?qū)y(cè)試電纜在大磁環(huán)上繞幾圈,這種使用磁環(huán)方法的等效電路如圖20所示。磁環(huán)可以增加測(cè)量電纜屏蔽層的阻抗并抑制流經(jīng)電纜屏蔽層的電流,同時(shí)不會(huì)影響流入測(cè)量電纜中心導(dǎo)體和返回到激勵(lì)源一側(cè)的電流。
由磁環(huán)自身的電感在測(cè)量電纜屏蔽層上產(chǎn)生的阻抗會(huì)降低流經(jīng)接地環(huán)路的共模噪聲電流和流入VT接收機(jī)一側(cè)測(cè)量電纜屏蔽層的激勵(lì)源電流。另外,在激勵(lì)源一側(cè)的測(cè)量電纜上也使用磁環(huán)可以使激勵(lì)源電流通過(guò)電纜的屏蔽層返回到激勵(lì)源一側(cè)。
但實(shí)際上這種方法做起來(lái)不太容易,因?yàn)槲覀冃枰业诫姼辛亢芨撸ǜ叽艑?dǎo)率)的優(yōu)質(zhì)磁環(huán),使其能完全消除出現(xiàn)在很低測(cè)量頻范圍內(nèi)的誤差。另外,有時(shí)候很難判斷磁環(huán)是否在有效地工作,特別是在被測(cè)器件的衰減特征不平坦的情況下。
針對(duì)這種應(yīng)用,我們推薦使用的環(huán)形磁芯是Metglas Finemet F7555G (Φ 79 mm) 。請(qǐng)參考www.metglas.com.
圖20 使用磁環(huán)降低測(cè)量誤差的解決萬(wàn)案
使用E5061B-3L5 的解決方案
E5061B-3L5 的增益相位測(cè)試端口(5 Hz至30 MHz)具有獨(dú)特的硬件體系結(jié)構(gòu),能夠消除信號(hào)源至接收機(jī)測(cè)試電纜接地環(huán)路引起的測(cè)量誤差。圖21是使用增益相位測(cè)試端口進(jìn)行測(cè)量的簡(jiǎn)化方框圖。接收機(jī)串接一個(gè)半浮地的阻抗 |Zg|, 該阻抗在100 kHz以下的低頻范圍內(nèi)大約是30 Ω 。與使用磁環(huán)的情況相似,我們可以直觀地看到阻抗|Zg| 阻止了測(cè)量電纜的屏蔽層電流。或者,我們?cè)O(shè)被測(cè)器件接地一側(cè)的電壓擺幅是Va,如圖21所示,由于RshieId要比接收機(jī)輸入阻抗50 Ω 小得多,因此可通過(guò)以下公式近似得出VT:
VT=Vc2+Vo=Va x Rc2/(Rc2+Zg)+Vo
因?yàn)镽c2 << |Zg|, 上式中的第一項(xiàng)可以忽略不計(jì),所以VT幾乎就是我們真正需要測(cè)量的Vo。因此,可以通過(guò)最大程度地降低屏蔽電阻的影響,能夠正確地測(cè)量出被測(cè)器件的大衰減量或毫歐級(jí)并聯(lián)阻抗。E5061B的增益相位測(cè)試端口可以輕松、精確地測(cè)量低頻范圍內(nèi)的大衰減值。
另一方面,與其他現(xiàn)有的低頻網(wǎng)絡(luò)分析儀一樣,E5061B-3L5 的S參數(shù)測(cè)試端口的測(cè)量接收機(jī)采用標(biāo)準(zhǔn)的接地體系結(jié)構(gòu)。如若使用S參數(shù)測(cè)試端口(例如,測(cè)量測(cè)頻超過(guò)30 MHz無(wú)法使用增益相位測(cè)試端口進(jìn)行測(cè)量時(shí))測(cè)量低頻大衰減器件,那么還是需要使用磁環(huán)來(lái)消除測(cè)試電纜的接地環(huán)路引起的誤差。
圖21 使用E5061B- 3L5增益相位測(cè)試端口的解決方案
增益相位測(cè)試端口的有效性
圖22顯示的是用E5061B S參數(shù)測(cè)試端口和增益相位測(cè)試端口對(duì)90 dB同軸衰減器進(jìn)行傳輸測(cè)量的結(jié)果,測(cè)試頻率范圍為100 Hz至10 MHz。圖中左側(cè)通道1的測(cè)量軌跡是使用S參數(shù)測(cè)試端口的測(cè)量結(jié)果。如圖所示,沒(méi)有使用磁芯的測(cè)量結(jié)果在低頻頻段內(nèi)顯示出不正確的數(shù)值偏大的測(cè)量結(jié)果,這是由激勵(lì)源和接收機(jī)之間測(cè)試電纜的接地環(huán)路引起的誤差。同一圖中的另一條軌跡是在測(cè)試電纜上加了磁環(huán)后的測(cè)量結(jié)果,雖然在低頻頻段上的測(cè)量結(jié)果有所改善,但在極低的測(cè)量頻率上測(cè)量結(jié)果仍不夠精確。
圖的右側(cè)通道2的測(cè)量軌跡是使用增益相位測(cè)試端口的測(cè)量結(jié)果。如圖所示,該方法可以正確地測(cè)量出測(cè)量頻率在 100 Hz以下時(shí) -90dB的衰減,測(cè)量結(jié)果不會(huì)受到測(cè)試電纜接地環(huán)路的影響。
圖22 三種不同測(cè)量方得到的測(cè)量結(jié)果的比較
運(yùn)算放大器測(cè)量實(shí)例
閉環(huán)增益
以下章節(jié)詳細(xì)說(shuō)明測(cè)量運(yùn)算放大器各種頻率響應(yīng)特征的實(shí)例。
圖23顯示的是用增益相位測(cè)試端口(測(cè)量頻率最高30 MHz)測(cè)量一個(gè)簡(jiǎn)單的反相放大器 (Av= -1)的閉環(huán)增益配置的實(shí)例。
為了最大限度地降低探頭電容對(duì)放大器負(fù)載條件的影響,建議使用10:1探頭,它具有相對(duì)較小的輸入電容。
為了精確測(cè)量增益和相位的頻響特性,需要把T測(cè)量通道的探頭點(diǎn)在TP1測(cè)試點(diǎn)上做直通響應(yīng)校準(zhǔn),這樣可以消除兩個(gè)探頭之間的增益和相位的誤差。
圖23 使用增益相位試端口進(jìn)行環(huán)增益測(cè)量的配置實(shí)例
如果您需要在30 MHz以上的頻率上測(cè)量放大器的頻率響應(yīng)特性,則需要使用S參數(shù)測(cè)試端口和有源探頭。圖24顯示了一個(gè)配置實(shí)例,我們必須要把探頭點(diǎn)在TP1測(cè)試點(diǎn)上做直通響應(yīng)校準(zhǔn),因?yàn)镽通道的接收機(jī)的輸入阻抗是50 Ω 的,我們需要把參考點(diǎn)設(shè)置在TP1上,這樣就可以測(cè)量被測(cè)器件輸入和輸出端口的電壓傳輸函數(shù)。
圖25顯示的是用E5061B的S參數(shù)測(cè)試端口和41800A有源探頭對(duì)高速運(yùn)算放大器進(jìn)行閉環(huán)增益測(cè)量的實(shí)例。游標(biāo)位于-3 dB的截止頻率上,這表明該放大器電路的帶寬約為20 MHz。
圖24 使用S參數(shù)測(cè)試端囗進(jìn)行環(huán)增益測(cè)量的配置實(shí)例
頻率=100Hz至100MHz
激勵(lì)源功率=0dBm
中頻帶寬自動(dòng)(上限=1kHz時(shí))
圖25 閉環(huán)增益測(cè)量實(shí)例
開(kāi)環(huán)增益
測(cè)量運(yùn)算放大器開(kāi)環(huán)增益的方法有很多種。最常用的方法是測(cè)量電路中的電壓比VT/VR,如圖26所示。假設(shè)運(yùn)算放大器的開(kāi)環(huán)增益為A,如果電流為Ir2,可得出下列公式:
(VT-VR)/R2 = {VT-(-A x VR)}/Zout
如果Zout << R2,可根據(jù)下式計(jì)算出電壓比VT/VR
VT/VR = (-A-Zout/R2)/(1-(Zout/R2)) = -A
對(duì)于高增益運(yùn)算放大器的情況,如果閉環(huán)增益Av很?。ㄈ纾篈v=-R2/R1=-1),則電壓VR會(huì)太小而無(wú)法精確測(cè)量,特別是在低頻率范圍內(nèi)開(kāi)環(huán)增益非常高時(shí)更加無(wú)法精確測(cè)量。
在線性工作區(qū)域內(nèi),如果閉環(huán)增益Av增加了,電壓 VR也將成比例增加,用儀表測(cè)量起來(lái)也將更加容易。例如,如果 |Av| = R2/R1 = 10, VR 將是當(dāng) |Av| =1 時(shí) VR的值。
圖26 閉環(huán)增益測(cè)量的配置實(shí)例
圖27顯示的是用增益相位端口進(jìn)行測(cè)量的配置方法。比值測(cè)量T/R的結(jié)果可直接表示開(kāi)環(huán)增益A。為了能夠精確地測(cè)量出相位的頻率響應(yīng)特性而不受到由于很大的探頭電容引起的負(fù)載條件的影響,測(cè)量時(shí)應(yīng)該使用10:1無(wú)源探頭,而不是同軸測(cè)試電纜。
圖27 使用增益相位測(cè)試端囗進(jìn)行開(kāi)環(huán)增益測(cè)量的配置買例
圖28顯示的是用圖27的增益相位配置方法測(cè)量單位增益條件(R1=R2=1 kΩ)下運(yùn)算放大器開(kāi)環(huán)增益的測(cè)量結(jié)果,測(cè)試頻率范圍從10 Hz至30 MHz。相位裕量可從這些測(cè)量結(jié)果中得出。在假設(shè)沒(méi)有相移的情況下,通過(guò)簡(jiǎn)單地找出反饋路徑傳遞函數(shù)阝:RI/()I+R2)= ½ = -6 dB的線,再把一個(gè)游標(biāo)置于 +6 dB 的點(diǎn)上,就可以找出環(huán)路增益I-A×阝]=0 dB的交叉點(diǎn)。相位裕量可以從這個(gè)游標(biāo)在相位軌跡上相對(duì)應(yīng)的位置直接讀出,就像我們?cè)谶\(yùn)算放大器輸入端口所看到的循環(huán)傳遞函數(shù) -Ax阝(其中包括 180度反轉(zhuǎn))。
高增益區(qū)域中的跡線波動(dòng)是由無(wú)源探頭的20 dB損耗所引起的動(dòng)態(tài)性能下降造成的。由于我們是在放大器的單位增益的條件下進(jìn)行開(kāi)環(huán)增益測(cè)量,在高增益區(qū)域內(nèi)R通道接收機(jī)測(cè)得的交流電壓將非常小,這將導(dǎo)致跡線的波動(dòng)。高增益區(qū)域內(nèi)的跡線波動(dòng)對(duì)于測(cè)量低增益區(qū)域內(nèi)測(cè)量數(shù)據(jù)的相位裕量來(lái)說(shuō),并不是什么問(wèn)題。
但是,如果您還想在低頻率范圍內(nèi)測(cè)量非常高的增益,那么您需要用同軸測(cè)試電纜替代10:1無(wú)源探頭再單獨(dú)測(cè)量另一個(gè)開(kāi)環(huán)增益。R端口接收機(jī)的衰減器應(yīng)設(shè)置為0 dB, T端口接收機(jī)的衰減器應(yīng)設(shè)為20 dB, 從而可以在信噪比非常良好的情況下在R通道接收機(jī)上測(cè)量非常小的電壓。請(qǐng)注意,此測(cè)量配置只適用于在中低頻率范圍,其中開(kāi)環(huán)增益比較高,R通道接收機(jī)上的電壓不會(huì)超過(guò)接收機(jī)的最大輸入電平(衰減器設(shè)置為0d。
圖28 使用增益相位端囗的開(kāi)環(huán)增益和相位測(cè)量實(shí)例
如果在超過(guò)30 MHz的情況下測(cè)量運(yùn)算放大器的開(kāi)環(huán)增益,需使用有源探頭和S參數(shù)測(cè)試端口。由于S參數(shù)測(cè)試端口只允許使用一個(gè)有源探頭,您需要使用兩步測(cè)量法。具體步驟如下:
1.把探頭點(diǎn)在TPI測(cè)試點(diǎn)上做響應(yīng)校準(zhǔn)。
2.把探頭點(diǎn)在TP2測(cè)試點(diǎn)上測(cè)量S21,并通過(guò)DATA->MEM操作(測(cè)量的第一步)存儲(chǔ)軌跡線數(shù)據(jù)。
3. 將一個(gè)虛電容連接到TP2,然后把探頭點(diǎn)在TP3測(cè)試點(diǎn)上測(cè)量S21(測(cè)量的第二步)。
4. 使用儀表的數(shù)學(xué)函數(shù)計(jì)算功能把第二步的測(cè)量結(jié)果除以第一步已經(jīng)存儲(chǔ)在寄存器中的的數(shù)據(jù)(數(shù)據(jù)/存儲(chǔ)器)就可以得到開(kāi)環(huán)增益的結(jié)果。
在第二步測(cè)量中連接的虛電容是和在第一步測(cè)量中的探頭電容一樣的,在高頻測(cè)量范圍內(nèi)會(huì)對(duì)開(kāi)環(huán)相位的測(cè)量結(jié)構(gòu)有所影響,這個(gè)虛電容的電容應(yīng)值該與有源探頭的輸入電容相同。
如果您需要測(cè)量一個(gè)非常高的開(kāi)環(huán)增益,最好在測(cè)試電纜上使用磁環(huán),以消除接地環(huán)路引起的測(cè)量誤差,這種測(cè)量誤差可能會(huì)影響到第一步測(cè)量中對(duì)很小信號(hào)的測(cè)量結(jié)果。
圖29 使用一個(gè)有源探頭進(jìn)行開(kāi)環(huán)增益測(cè)量的配置實(shí)例
圖30顯示的是用圖29中的配置測(cè)量開(kāi)路增益和相位的實(shí)例。軌跡1是在TP2測(cè)試點(diǎn)上測(cè)得的響應(yīng)結(jié)果,它是輸入電壓與TP2處經(jīng)過(guò)衰減的電壓的比值。軌跡2是在TPB測(cè)試點(diǎn)上測(cè)得的響應(yīng)結(jié)果,它是閉環(huán)增益和相位。軌跡3是從這些測(cè)量結(jié)果中計(jì)算出的開(kāi)環(huán)增益和相位,這些結(jié)果是通過(guò)對(duì)已經(jīng)測(cè)量到的軌跡進(jìn)行數(shù)學(xué)函數(shù)計(jì)算(數(shù)據(jù)/存儲(chǔ)器)得出來(lái)的。
如前所述,相位裕量是當(dāng)開(kāi)環(huán)增益等于6 dB 時(shí)所對(duì)應(yīng)的相位測(cè)量結(jié)果的值,此時(shí)環(huán)路增益為0dB。在這個(gè)例子中,相位裕量約為86度。
圖30 使用一個(gè)有源探頭測(cè)量開(kāi)環(huán)增益和相位測(cè)量實(shí)例
共模抑制比CMRR
運(yùn)算放大器和其他低頻率差分放大器的CMRR(共模抑制比)通常很難測(cè)量,因?yàn)槟枰獪y(cè)量非常大的共模輸入衰減。共模抑制比的定義為CMRR=Ad/Ac,其中Ad是差模增益,Ac是共模增益。圖31顯示的是用增益相位測(cè)試端口進(jìn)行測(cè)量的配置。為了測(cè)量大的衰減值,需要使用同軸測(cè)試電纜連接接收機(jī)和被測(cè)件,而不是使用有20 dB損耗的 10:1無(wú)源探頭。
您可以將開(kāi)關(guān)SW1打到位置A測(cè)量共模增益(衰減)Ac,把SW1打到位置B測(cè)量差分增益Ad。然后根據(jù)Ad/Ac(=20×Log(Ad/Ac)以dB為單位)計(jì)算出CMRR。該電路的差分增益是IAdI=R2/R1=10,它的共模增益Ac是IAdI=1時(shí)的10倍(即20 dB),這種測(cè)量方法可以使儀表測(cè)量超過(guò)100 dB的CMRR。
由于增益相位測(cè)試端口是半浮地的接收機(jī)體系結(jié)構(gòu),您可以通過(guò)消除測(cè)試電纜接地環(huán)路導(dǎo)致的測(cè)量誤差來(lái)精確地測(cè)量高CMRR。
圖31 使用增益相位測(cè)試端口進(jìn)行共模抑制比CMRR測(cè)量的配置實(shí)例
使用S參數(shù)測(cè)試端口和有源探頭可以測(cè)量頻率高于30 MHz的CMRR。在這種情況下,需要在測(cè)試電纜上使用磁環(huán),如圖32所示,以消除共模噪聲引起的測(cè)量誤差??梢允褂肕etglas Finemet F7555G型磁環(huán)( Φ 79 mm:metglas.com)。
圖33.顯示的是用增益相位測(cè)試端口進(jìn)行測(cè)量的實(shí)例。軌跡1表示共模增益Ac,軌跡2是差模增益Ad(= 20dB)。通過(guò)消除接地環(huán)路的影響,可精確地測(cè)出約為 -90 dB的共模增益Ac。軌跡3是由這些結(jié)果計(jì)算出來(lái)的CMRR。其上的游標(biāo)表明在100 kHz時(shí)CMRR約為80 dB 。在低頻范圍內(nèi),CMRR大于100 dB。
圖32 使用S參數(shù)端口進(jìn)行CMRR測(cè)量的配置實(shí)例
頻率=100Hz至100MHz
激勵(lì)源功率
對(duì)于Ac測(cè)量:0 dBm
對(duì)于Ad測(cè)量: -15 dBm
中頻帶寬=自動(dòng)(最大100 HZ)
接收機(jī)ATT設(shè)置
Ac測(cè)量:20 dB (R通道)
0 dB (T通道)
Ad測(cè)量:20 dB(R通道和T通道)
在這個(gè)測(cè)量例子中RI和R2之間的平衡并未完全優(yōu)化。
圖33. 使用增益相位端口進(jìn)行CMRR測(cè)量的實(shí)例
電源抑制比(PSRR)
放大器的電源抑制比(PSRR)是另一個(gè)比較難測(cè)量的參數(shù),因?yàn)樗筮M(jìn)行大衰減值的測(cè)量。此處其定義為PSRR=Av/Ap, 其中Av是放大器電路的閉環(huán)增益,Ap是從電源的輸入端口(正極/負(fù)極)至輸出端口的增益。與CMRR測(cè)量相似,在線性工作范圍內(nèi)Ap與Av成正比。
圖34顯示的是用增益相位端口測(cè)量PSRR(正PSRR)的配置實(shí)例。由于IAvI=R2/R1=1,測(cè)得的電路增益直接指示為運(yùn)算放大器的PSRR(=1/Ap,一個(gè)值為負(fù)數(shù)的dB值)的倒數(shù)。測(cè)量的激勵(lì)源信號(hào)加在供電電源的正極上,有直流偏置電壓。E5061B有一個(gè)內(nèi)置直流偏置源,使您能夠在內(nèi)部將直流電壓偏置附加到激勵(lì)源的交流信號(hào)上。
圖34 使用增益相位測(cè)試端囗進(jìn)行PSRR測(cè)量的配置實(shí)例
使用S參數(shù)測(cè)試端口和有源探頭可以測(cè)量頻率高于30 MHz的PSRR。與使用S參數(shù)測(cè)試端口進(jìn)行CMRR測(cè)量相似,我們推薦將磁環(huán)用在測(cè)試電纜上,以消除測(cè)試電纜接地環(huán)路引起的測(cè)量誤差。圖36顯示的是用增益相位測(cè)試端口進(jìn)行PSRR測(cè)量的實(shí)例,其上的游標(biāo)表明在1 kHz時(shí)PSRR約為-87 dB。E5061B-3L5具有直流監(jiān)測(cè)功能,可用于檢查實(shí)際加在被測(cè)器件上的直流電壓的值。
圖35 使用S參數(shù)測(cè)試端囗進(jìn)行PSRR測(cè)試的配置實(shí)例
圖36 使用增益相位測(cè)試端囗進(jìn)行PSRR測(cè)量的實(shí)例
輸出阻抗
運(yùn)算放大器輸出阻抗的測(cè)量不是雙端口傳輸參數(shù)的測(cè)量,而是單端口阻抗測(cè)量。通常情況下,運(yùn)算放大器的閉環(huán)輸出阻抗范圍從低頻率的幾十毫歐到高頻率的100歐。為了能夠完全在這個(gè)阻抗范圍內(nèi)進(jìn)行測(cè)量,反射測(cè)量法將是一種適當(dāng)?shù)慕鉀Q方案。圖37顯示的是測(cè)量運(yùn)算放大器閉環(huán)輸出阻抗的配置實(shí)例。測(cè)量時(shí)必須要做開(kāi)路/短路/負(fù)載校準(zhǔn)(全單端口校準(zhǔn))。
圖37 輸出阻抗測(cè)量的配置實(shí)例
圖38是閉環(huán)輸出阻抗的測(cè)量實(shí)例。測(cè)得的跡線顯示的是經(jīng)過(guò)阻抗轉(zhuǎn)換函數(shù)的計(jì)算繪制的阻抗值的幅度。左側(cè)的跡線顯示的是用對(duì)數(shù)刻度[20x log IZI dB]表示的輸出阻抗。右側(cè)的跡線顯示的是用線性刻度[Ω]表示的輸出阻抗。
圖38 輸出阻抗測(cè)量實(shí)例
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
- 看完CES看CITE 2025開(kāi)年巨獻(xiàn)“圳”聚創(chuàng)新
- 傳感器和轉(zhuǎn)換器的設(shè)計(jì)應(yīng)用
- 原來(lái)為硅MOSFET設(shè)計(jì)的DC-DC控制器能否用來(lái)驅(qū)動(dòng)GaNFET?
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
圖像傳感器
陀螺傳感器
萬(wàn)用表
萬(wàn)用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開(kāi)關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開(kāi)關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開(kāi)關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無(wú)焊端子
無(wú)線充電
無(wú)線監(jiān)控
無(wú)源濾波器
五金工具