從拓?fù)涞慕嵌葋砜矗秸髌鞯膫鲗?dǎo)損耗和開關(guān)損耗都更低,能夠提高這些轉(zhuǎn)換級的效率,因而是開關(guān)模式電源次級端的基本構(gòu)建模塊,在服務(wù)器電源或電信整流器等低壓及大電流應(yīng)用中非常流行。如圖1所示,它取代了肖特基整流器,可使電壓降變得更小。從器件角度來看,過去十年中,功率MOSFET晶體管的進(jìn)展巨大,催生出了新穎的拓?fù)浜透吖β拭芏入娫础?0世紀(jì)早期平面技術(shù)問世之后,中低電壓MOSFET迅速被開發(fā)出來,利用溝槽柵技術(shù)來大幅提高性能。溝槽柵MOSFET是中低電壓電源應(yīng)用的首選功率器件,其把一個(gè)柵極結(jié)構(gòu)嵌入在精心蝕刻在器件結(jié)構(gòu)上的溝槽區(qū)域中。這種新技術(shù)可以提高溝槽密度,并無需JFET阻抗元件,因此能夠使特征導(dǎo)通阻抗降低30%左右。當(dāng)MOSFET的導(dǎo)通阻抗與漏極電流的乘積小于二極管正向電壓降時(shí),同步整流的能量損耗降低。
不過,在同步整流方面,低導(dǎo)通阻抗并非電源開關(guān)的唯一要求。為了降低驅(qū)動(dòng)損耗,這些器件的柵極電荷也應(yīng)該很小。軟體二極管的反向恢復(fù)特性有助于削弱電壓尖刺的峰值,從而降低緩沖電路損耗。另外,還有輸出電荷QOSS和反向恢復(fù)電荷Qrr造成的開關(guān)損耗。因此,中低壓MOSFET的關(guān)鍵參數(shù),如RDS(ON)、QG、QOSS、Qrr和反向恢復(fù)特性,直接影響到同步整流系統(tǒng)的效率。
圖1:二極管整流和同步整流
針對同步整流進(jìn)行優(yōu)化的功率MOSFET
在開關(guān)模式電源中,RDS(ON)×QG FOM(品質(zhì)因數(shù))一般被視為衡量MOSFET性能的唯一最重要的指標(biāo)。因此,已經(jīng)開發(fā)出數(shù)項(xiàng)提高RDS(ON)×QG FOM的新技術(shù)。雖然這些年來MOSFET技術(shù)和單元結(jié)構(gòu)經(jīng)歷了巨大的革新,但MOSFET垂直單元結(jié)構(gòu)大致仍可分為三類:平面型,溝槽型和橫向型。在這三類結(jié)構(gòu)中,溝槽柵MOSFET已成為BVDSS<200V的高性能分立式功率MOSFET的主流。這主要是因?yàn)檫@種器件不僅特征導(dǎo)通阻抗特別低,而且能夠在BVDSS范圍內(nèi)獲得出色的RDS(ON)×QG 品質(zhì)因數(shù)(FOM)。
溝槽柵結(jié)構(gòu)可以大幅減小溝槽阻抗(Rchannel)和JFET阻抗(R JFET),而對低壓MOSFET(BVDSS<200V)來說,JFET阻抗正是造成導(dǎo)通阻抗的主要原因。溝槽結(jié)構(gòu)能夠提供最短的漏-源電流路徑(垂直),以此降低RDS(ON),利用這種醒目的優(yōu)勢,無需任何JFET夾斷效應(yīng)即可提高單元密度。每個(gè)區(qū)域的相關(guān)阻抗所占的百分比差異很大,取決于具體的設(shè)計(jì)與BVDSS。盡管降低傳導(dǎo)損耗必需要降低RDS(ON),但必須考慮到更高的FOM,對現(xiàn)有最優(yōu)化結(jié)構(gòu)的溝槽深度和寬度進(jìn)行權(quán)衡折衷。標(biāo)準(zhǔn)溝槽單元常常有一些變體設(shè)計(jì),旨在保持低阻抗,同時(shí)提高FOM。圖2所示的傳統(tǒng)溝槽柵結(jié)構(gòu)通過增加溝槽的寬/長比來獲得更低的導(dǎo)通阻抗。為了提高開關(guān)性能,增大CGS /CGD比,隨之業(yè)界又開發(fā)出了在溝槽底部生長一層厚氧化層的技術(shù),如圖3所示。
這種方案不僅有助于減小柵-漏疊加電容CGD,還能改善漂移區(qū)阻抗。此外,它也有利于降低導(dǎo)通阻抗與柵極電荷,因?yàn)楝F(xiàn)在可以一方面通過薄柵極氧化層來獲得更低的Vth與導(dǎo)通阻抗,同時(shí)又還可以在溝槽底部采用加厚氧化層以獲得最低的CGD。還有一種技術(shù)就是采用電荷平衡或超級結(jié)器件結(jié)構(gòu)。它最初是針對高壓器件開發(fā)的,現(xiàn)在也可用于低壓器件。利用電荷平衡方案,可以在漂移區(qū)獲得兩維電荷耦合,因而能夠在漂移區(qū)采用更高的摻雜濃度,最終降低漂移阻抗。相比前代技術(shù),這種新型中壓功率MOSFET不僅在特征阻抗方面有大幅度改進(jìn),同時(shí)其原本相當(dāng)出色的開關(guān)特性也得到進(jìn)一步提高。
除了RDS(ON)和QG之外,同步整流結(jié)構(gòu)中的其它參數(shù),如體二極管反向恢復(fù)、內(nèi)部柵極阻抗以及MOSFET的輸出電荷(QOSS),現(xiàn)在也變得更具相關(guān)性。在開關(guān)頻率和輸出電流較高時(shí),這些損耗元件的重要性便更為明顯。飛兆半導(dǎo)體的中壓MOSFET產(chǎn)品現(xiàn)在開始針對二極管反向恢復(fù)以及輸出電容的最小化進(jìn)行優(yōu)化。
圖2:傳統(tǒng)溝槽柵MOSFET
圖3:底部有厚氧化層的溝槽MOSFET
圖4:增加了屏蔽電極的溝槽MOSFET
相關(guān)閱讀:
第二講:基于IGBT的高能效電源設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020858
第一講:基于SiC雙極結(jié)型晶體管的高能效設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020845
[page]
同步整流的功耗
電源開關(guān)的主要功耗是傳導(dǎo)損耗和開關(guān)損耗。此外還有輸出電容引起的電容性損耗、漏電流造成的關(guān)斷狀態(tài)損耗、反向恢復(fù)損耗和驅(qū)動(dòng)損耗。在高壓大功率應(yīng)用中,這些損耗常常被忽略;而對于數(shù)瓦的應(yīng)用,眾所周知電容性損耗可能高達(dá)總功耗的50%以上。必須注意的一點(diǎn)是,漏電流超標(biāo)的不合格器件可能導(dǎo)致熱耗散故障,尤其是在環(huán)境溫度高的情況下,然而這是很常見的事。在低壓應(yīng)用中,驅(qū)動(dòng)損耗可占總功耗的很大部分,因?yàn)橄啾雀邏洪_關(guān),低壓開關(guān)的傳導(dǎo)損耗非常小。在輕負(fù)載條件下,傳導(dǎo)損耗極小,驅(qū)動(dòng)損耗更為重要。隨著電腦節(jié)能拯救氣候行動(dòng)等新的效率規(guī)范的推出,驅(qū)動(dòng)損耗成為輕載效率的關(guān)鍵因素。驅(qū)動(dòng)損耗可通過下式求得:
開關(guān)頻率和柵極驅(qū)動(dòng)電壓屬于設(shè)計(jì)參數(shù),而柵極電荷值則由數(shù)據(jù)手冊提供。同步整流與二極管整流器的一個(gè)不同之處是,MOSFET是一種雙向器件。圖5顯示了一般情況下,在傳導(dǎo)期間從源極到漏極流經(jīng)MOSFET溝槽的電流,以及在死區(qū)時(shí)間內(nèi)流經(jīng)體二極管的電流。由于同步整流中,體二極管的導(dǎo)通先于柵極導(dǎo)通,故 同步開關(guān)可以采用零電壓開關(guān)技術(shù)。由于同步整流中,軟開關(guān)在開關(guān)導(dǎo)通和關(guān)斷瞬間工作,dVds/vt為零。因此,CGD(因dVds/dt)的電容性電流也為零。
圖5:同步整流中功率MOSFET的波形
鑒于這種順序,應(yīng)該謹(jǐn)慎選擇式1中的柵極電荷值。由于導(dǎo)通瞬間同步開關(guān)上無電壓,這時(shí)不會發(fā)生“米勒效應(yīng)”。因此,得到的柵極電荷值近似等于總柵極電荷QG減去柵極電荷的柵漏極部分QGD。不過,這仍然是對驅(qū)動(dòng)損耗的樂觀估計(jì),實(shí)際中,同步開關(guān)的柵極電荷值并不等于簡單的QG-QGD估算值,這是因?yàn)樵谕秸髦?,漏極和源極之間存在一個(gè)負(fù)偏壓,而數(shù)據(jù)手冊中的QG和QGD是利用正偏壓測得的。而且,Vth以下的QSYNC曲線類似于Vth以上的斜線,因?yàn)橥秸髦?,零電壓開關(guān)期間這兩個(gè)區(qū)域的漏源電壓都為零。同步整流的柵極電荷QSYNC可利用圖6所示的簡單電路,并在Q1和Q2上加載適當(dāng)?shù)尿?qū)動(dòng)信號來測得。
圖6:QSYNC 的測量
利用已知的電阻值,可通過下式求得QSYNC,這樣就可以更準(zhǔn)確地估算出柵極驅(qū)動(dòng)功耗。同步整流中,QSYNC較小,器件的性能也較好。如圖7所示,同步整流的功率MOSFFET的柵-源電壓上無平坦區(qū)。
圖7:QSYNC的定義
在同步整流中,要降低QSYNC,CGS(Ciss-Crss)是更加關(guān)鍵的因數(shù)。如圖8所示,由于設(shè)計(jì)優(yōu)化,相比4.5毫歐的其他產(chǎn)品,3.6毫歐MOSFET的CGS大幅度減小。如表1所示,相比4.5毫歐和3.0毫歐器件,3.6毫歐MOSFET的QSYNC分別降低了22%和59%。圖9對柵極驅(qū)動(dòng)電壓為10V,開關(guān)頻率為100kHz的27V同步整流級的驅(qū)動(dòng)損耗和傳導(dǎo)損耗之比進(jìn)行了計(jì)算和比較。這里有兩個(gè)同步開關(guān),在10%的負(fù)載條件下,3.0毫歐產(chǎn)品的驅(qū)動(dòng)損耗是傳導(dǎo)損耗的兩倍。
圖8:100V柵-源電容/3.6毫歐MOSFET與其他產(chǎn)品的比較
圖9:DUT的關(guān)鍵規(guī)格比較
圖10:不同輸出負(fù)載條件下,損耗比的比較
數(shù)據(jù)手冊上規(guī)定的二極管反向恢復(fù)時(shí)間(Trr)和反向恢復(fù)電荷(Qrr)一般用于正向開關(guān)損耗的計(jì)算。在利用數(shù)據(jù)手冊上的Qrr值來計(jì)算損耗時(shí),需注意一點(diǎn):晶體二極管的反向恢復(fù)電流是許多參數(shù)的函數(shù),比如正向電流IF、反向恢復(fù)diF/dt、DC總線電壓和結(jié)溫Tj,其中任何一個(gè)參數(shù)的增加都會導(dǎo)致Qrr的提高。數(shù)據(jù)手冊上的條件通常比典型的轉(zhuǎn)換器工作條件低。由于開關(guān)轉(zhuǎn)換器需盡可能快地對功率MOSFET進(jìn)行轉(zhuǎn)換,邊緣速率,如diF/dt,可能比數(shù)據(jù)手冊上的條件快10倍之多,從而使同步整流的Qrr大大增加。
輸出電荷Qoss和反向恢復(fù)電荷Qrr在關(guān)斷開關(guān)的同時(shí)也造成損耗。因此,Coss 和Qrr產(chǎn)生的功耗可通過下式求得:
第二講:基于IGBT的高能效電源設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020858
第一講:基于SiC雙極結(jié)型晶體管的高能效設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020845
[page]
開關(guān)上的電壓尖刺
把有害電壓尖刺降至最小的一般原則是采用短而厚的電路板以及最小的電流回路。然而,由于尺寸和成本的限制,做到這些并不容易。有時(shí),設(shè)計(jì)人員必需考慮到機(jī)械結(jié)構(gòu)的問題,如散熱器和風(fēng)扇;有時(shí)鑒于成本限制因素,不得不使用單面印制電路板。緩沖電路可作為一種可行的替代方案,用來在最大額定漏源電壓范圍內(nèi)管理電壓尖刺。這種情況下,額外的功耗是無法避免的。此外,輕載下緩沖電路本身產(chǎn)生的功耗也不可忽視。除了電路板參數(shù)之外,器件的特性也對電壓尖刺電平有影響。在同步整流中,一個(gè)主要的器件相關(guān)參數(shù)是反向恢復(fù)期間的體二極管軟度因子?;旧?,二極管的反向恢復(fù)特性是由設(shè)計(jì)決定的。有好幾個(gè)控制輸入對反向恢復(fù)產(chǎn)生影響,如結(jié)溫、di/dt和正向電流水平。但是,當(dāng)條件固定時(shí),二極管總是表現(xiàn)出相同的行為。因此,器件的評估結(jié)果對評測系統(tǒng)的運(yùn)作情況非常有用。圖11所示為兩個(gè)不同器件(但有極其相似的額定值)的反向恢復(fù)波形。
圖11:不同軟度因子的反向恢復(fù)波形
在反向恢復(fù)電流波形中,從零到峰值反向電流的這段時(shí)間被稱為ta。tb則定義為從峰值回到零的時(shí)間。軟度因子定義為tb/ta。一個(gè)軟器件的軟度因子大于1,而當(dāng)其軟度因子小于1時(shí),該器件被認(rèn)為是“snappy(活躍的)”。從圖11可看出,反向恢復(fù)期間snappy二極管的峰值電壓較大。當(dāng)所有條件都相同時(shí),snappy二極管的電壓尖刺總是比較高,因此會在緩沖電路中造成額外的損耗。輕載條件下,這一點(diǎn)可能比把導(dǎo)通阻抗RDS(on)減小1毫歐還要來得重要。圖12所示為諧振頻率為400kHz的500W PSFB DC-DC轉(zhuǎn)換器中軟器件與snappy器件的工作波形。軟器件的峰值電壓比snappy器件的小10%,從而可使緩沖電路的功耗降低30%,系統(tǒng)效率提高0.5%。盡管軟器件的RDS(on)比snappy器件的要高25%,但在20%負(fù)載條件下,二者的效率分別為94.81%與94.29%。滿載下兩個(gè)器件的效率相同。
圖12:500W PSFB DC-DC轉(zhuǎn)換器中功率MOSFET的峰值漏-源電壓,軟器件(左),snappy器件(右)
軟體二極管的另一個(gè)優(yōu)點(diǎn)是它能夠使用額定擊穿電壓較低的器件。由于單位面積的導(dǎo)通阻抗與擊穿電壓成比例,故它還能降低傳導(dǎo)損耗。
圖13:800W同步整流電路的損耗分析
為同步整流創(chuàng)建更高效的電源開關(guān),低RDS(on)不是唯一的要求。隨著輕載效率的重要性增強(qiáng),柵極驅(qū)動(dòng)損耗和緩沖電路損耗變?yōu)槭种匾膿p耗因素。因此,低QSYNC和軟二極管成為獲得更高同步整流效率的至關(guān)重要的特性。不過,RDS(ON)仍然是應(yīng)用的關(guān)鍵參數(shù)。圖13所示為帶同步整流的800WPSFB中,在不同負(fù)載和不同器件條件下,不同元件的相關(guān)功耗。由于在10%負(fù)載條件下的驅(qū)動(dòng)損耗和輸出電容性損耗更低,3.6毫歐MOSFET的總功耗比3.0毫歐其他產(chǎn)品減小43%。此外,3.6毫歐MOSFET的功耗主要源于滿負(fù)載條件下的傳導(dǎo)損耗,因此其功耗比4.7毫歐其他產(chǎn)品的更低。從圖13總結(jié)的損耗分析可明顯看出,3.6毫歐MOSFET由于進(jìn)行了設(shè)計(jì)優(yōu)化,故可以大幅降低滿載和輕載條件下的功耗,提高電源功耗。
相關(guān)閱讀:
第二講:基于IGBT的高能效電源設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020858
第一講:基于SiC雙極結(jié)型晶體管的高能效設(shè)計(jì)
http://m.gpag.cn/gptech-art/80020845