反激式開關(guān)電源的變壓器電磁兼容性設(shè)計(jì)
發(fā)布時(shí)間:2014-06-11 責(zé)任編輯:lefteye
[導(dǎo)讀]開關(guān)電源電路中的噪聲活躍節(jié)點(diǎn)是電路中的共模噪聲源。要降低開關(guān)電源的傳導(dǎo)干擾水平,實(shí)際上是減小共模電流強(qiáng)度、增大噪聲源的對(duì)地阻抗。本文以一款反激式開關(guān)電源為例,闡述了其傳導(dǎo)共模干擾的產(chǎn)生、傳播機(jī)理。根據(jù)噪聲活躍節(jié)點(diǎn)平衡的思想,提出了一種新的變壓器EMC設(shè)計(jì)方法。
隨著功率半導(dǎo)體器件技術(shù)的發(fā)展,開關(guān)電源高功率體積比和高效率的特性使得其在現(xiàn)代軍事、工業(yè)和商業(yè)等各級(jí)別的儀器設(shè)備中 得到廣泛應(yīng)用,并且隨著時(shí)鐘頻率的不斷提高,設(shè)備的電磁兼容性(EMC)問(wèn)題引起人們的廣泛關(guān)注。EMC設(shè)計(jì)已成為開關(guān)電源開發(fā)設(shè)計(jì)中必不可少的重要環(huán)節(jié)。
傳導(dǎo)電磁干擾(EMI)噪聲的抑制必須在產(chǎn)品開發(fā)初期就加以考慮。通常情況下,加裝電源線濾波器是抑制傳導(dǎo)EMI的必要措施[1]。但是,僅僅依靠電源輸入端的濾波器來(lái)抑制干擾往往會(huì)導(dǎo)致濾波器中元件的電感量增加和電容量增大。而電感量的增加使體積增加;電容量的增大受到漏電流安全標(biāo)準(zhǔn)的限制。電路中的其他部分如果設(shè)計(jì)恰當(dāng)也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節(jié)點(diǎn)相位干燥繞法,這種設(shè)計(jì)方法不僅能減少電源線濾波器的體積,還能降低成本。
反激式開關(guān)電源的共模傳導(dǎo)干擾
電子設(shè)備的傳導(dǎo)噪聲干擾指的是:設(shè)備在與供電電網(wǎng)連接工作時(shí)以噪聲電流的形式通過(guò)電源線傳導(dǎo)到公共電網(wǎng)環(huán)境中去的電磁干擾。傳導(dǎo)干擾分為共模干擾與差模干擾 兩種。共模干擾電流在零線與相線上的相位相等;差模干擾電流在零線與相線上的相位相反。差模干擾對(duì)總體傳導(dǎo)干擾的貢獻(xiàn)較小,且主要集中在噪聲頻譜低頻端, 較容易抑制;共模干擾對(duì)傳導(dǎo)干擾的貢獻(xiàn)較大,且主要處在噪聲頻譜的中頻和高頻頻段。對(duì)共模傳導(dǎo)干擾的抑制是電子設(shè)備傳導(dǎo)EMC設(shè)計(jì)中的難點(diǎn),也是最主要的 任務(wù)。
反激式開關(guān)電源的電路中存在一些電壓劇變的節(jié)點(diǎn)。和電路中其他電勢(shì)相對(duì)穩(wěn)定的節(jié)點(diǎn)不同,這些節(jié)點(diǎn)的電壓包含高強(qiáng)度的高頻成分[2]。 這些電壓變化十分活躍的節(jié)點(diǎn)稱為噪聲活躍節(jié)點(diǎn)。噪聲活躍節(jié)點(diǎn)是開關(guān)電源電路中的共模傳導(dǎo)干擾源,它作用于電路中的對(duì)地雜散電容就產(chǎn)生共模噪聲電流ICM 。而電路中對(duì)EMI影響較大的對(duì)地雜散電容有:功率開關(guān)管的漏極對(duì)地的寄生電容Cde,變壓器的主邊繞組對(duì)副邊繞組的寄生電容Cpa;變壓器的副邊回路對(duì)地的寄生電容Cae, 變壓器主、副邊繞組對(duì)磁芯的寄生電容Cpc、Cac 以及變壓器磁芯對(duì)地的寄生電容Cce這些寄生電容在電路中的分布如圖1所示。
圖1、共模噪聲電流在電路中的耦合途徑
圖1中的共模電流ICM在電路中的耦合途徑主要有3條:從噪聲源—— 功率開關(guān)管的d極通過(guò)Cde耦合到地;從噪聲源通過(guò)Cpa耦合到變壓器次級(jí)電路,再通過(guò)Cae 耦合到地;從變壓器的前、次級(jí)線圈通過(guò)Cpc、Cac 耦合到變壓器磁芯,再通過(guò)Cce 耦合到地。這3種電流是構(gòu)成共模噪聲電流(圖1中的黑色箭頭所示)的主要因素。共模電流通過(guò)電源線輸入端的地線回流,從而被LISN取樣測(cè)量得到。
[page]
隔離變壓器的EMC設(shè)計(jì)
共模噪聲的耦合除了通過(guò)場(chǎng)效應(yīng)管d極對(duì)地這條途徑外,開關(guān)管d極的噪聲電壓通過(guò)變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過(guò)次級(jí)回路對(duì)地的寄生電容耦合到地也是共模電流產(chǎn)生的途徑。因此設(shè)法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設(shè)計(jì)方法。傳統(tǒng)的變壓器 EMC設(shè)計(jì)方法是在兩繞組間添加隔離層[3],如圖2所示。
圖2、變壓器隔離層對(duì)噪聲電流的影響
金屬隔離層直接連接地線的設(shè)計(jì)會(huì)增大共模噪聲電流,使EMC性能變差。隔離層應(yīng)該是電路中電位穩(wěn)定的節(jié)點(diǎn),比如將圖2中的隔離層連接到電路前級(jí)的負(fù)極就是一個(gè)很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線的傳導(dǎo)噪聲發(fā)射水平。
在電路中,噪聲電壓活躍節(jié)點(diǎn)并不是單一的。以本文分析的電路為例:除功率開關(guān)管的d極外,變壓器前級(jí)繞組的另一端Uin 也是一個(gè)噪聲電壓活躍節(jié)點(diǎn),而且節(jié)點(diǎn)電壓的變化方向與場(chǎng)管的d極電壓情況相反。所以變壓器次級(jí)繞組的兩端是相位相反的噪聲電壓活躍節(jié)點(diǎn)。圖3所示的是采用節(jié)點(diǎn)相位平衡法后,變壓器骨架上的線圈分布情況。
圖3、噪聲電流在變壓器內(nèi)部的耦合情況
變壓器骨架最內(nèi)層是前級(jí)繞組線圈的一半,與功率開關(guān)管的d極相連;中間層的線圈是次級(jí)繞組;最外層是前級(jí)繞組的另一半,與節(jié)點(diǎn)Uin相連。由于噪聲電流主要通過(guò)前后級(jí)線圈層之間的寄生電容耦合,把前、后級(jí)線圈方向相反的噪聲活躍節(jié)點(diǎn)成對(duì)地繞在內(nèi)外層相對(duì)位置就能使大部分的噪聲電流相互抵消,大大降低了最終耦合到次級(jí)的噪聲電流的強(qiáng)度。
本文討論的電路中還存在前級(jí)電路和次級(jí)電路的輔助電源,它們也是由繞在變壓器上的獨(dú)立線圈提供能量的。這兩級(jí)輔助線圈的存在給噪聲電流的傳播提供了額外的途 徑。輔助線圈是為了控制電路的供電設(shè)計(jì)的。盡管控制電路本身的功率很小,但它們的存在卻增大了電路對(duì)地的寄生電容,從而分擔(dān)了一部分把共模噪聲從活躍節(jié)點(diǎn) 耦合到地的工作。然而把這些繞組夾在前級(jí)線圈和次級(jí)線圈的繞組中間就能增大前后級(jí)繞組的距離,從而它們的層間寄生電容就減小了,噪聲電流就能相應(yīng)減小。因 此,變壓器繞制的最終方法應(yīng)如圖4所示。從內(nèi)到外的線圈繞組依次是:前級(jí)繞組的一半、輔助繞組的一半、后級(jí)繞組、輔助繞組的另一半和前級(jí)繞組的另一半。
解決方案的實(shí)驗(yàn)驗(yàn)證
變壓器改進(jìn)繞法對(duì)開關(guān)電源的傳導(dǎo)EMC性能提高的有效性可以通過(guò)實(shí)驗(yàn)得到驗(yàn)證。
實(shí)驗(yàn)按照文獻(xiàn)[4]中的電壓法進(jìn)行。頻段范圍為0.15~30 MHz;頻譜分析儀的檢波方式為準(zhǔn)峰值檢波;測(cè)量帶寬為9 kHz;頻譜橫軸(頻率)取對(duì)數(shù)形式;噪聲信號(hào)的單位為dBμV[5]。
圖4、變壓器改進(jìn)繞法細(xì)節(jié)
圖5為變壓器設(shè)計(jì)改進(jìn)前后實(shí)驗(yàn)樣品的傳導(dǎo)噪聲頻譜對(duì)比。
圖5、變壓器設(shè)計(jì)改進(jìn)前后的噪聲頻譜
圖5中的上下兩條平行折線分別為國(guó)際無(wú)線電干擾特別委員會(huì)(簡(jiǎn)稱CISPR)頒布的CISPR22標(biāo)準(zhǔn)中b級(jí)要求的準(zhǔn)峰值檢波限值和平均值檢波限值;而曲線 為開關(guān)電源的傳導(dǎo)噪聲頻譜。從實(shí)驗(yàn)結(jié)果可以看出:與傳統(tǒng)方法相比,新方法有著更出色的對(duì)共模噪聲電流的抑制能力,尤其在中頻1~5MHz的頻段。在較低頻 段,電源線上的傳導(dǎo)干擾主要是差模電流引起的;而在中高頻段,共模電流起主要作用。而本文提出的方法對(duì)共模電流的抑制較強(qiáng),實(shí)驗(yàn)和理論是相符合的。在10 MHz以上的頻段,主要由電路中的其他寄生參數(shù)決定EMC性能,與變壓器關(guān)系不大。
結(jié)束語(yǔ)
開關(guān)電源電路中的噪聲活躍節(jié)點(diǎn)是電路中的共模噪聲源。要降低開關(guān)電源的傳導(dǎo)干擾水平,實(shí)際上是減小共模電流強(qiáng)度、增大噪聲源的對(duì)地阻抗。在傳統(tǒng)的隔離式EMC設(shè)計(jì)中,隔離層連接到電路中電位穩(wěn)定的節(jié)點(diǎn)上(如:變壓器前級(jí)的負(fù)極)要比直接連到地線對(duì)EMI干擾的抑制更有效。
開關(guān)電源電路中的噪聲活躍節(jié)點(diǎn)通常都是成對(duì)存在的,這些成對(duì)節(jié)點(diǎn)之間的相位相反,利用這一特點(diǎn)活躍節(jié)點(diǎn)相位平衡繞法對(duì)EMI抑制的有效性高于傳統(tǒng)的隔離式設(shè)計(jì)。由于不需要添加隔離金屬層,變壓器的體積與成本都能被有效減小或降低。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
- 看完CES看CITE 2025開年巨獻(xiàn)“圳”聚創(chuàng)新
- 傳感器和轉(zhuǎn)換器的設(shè)計(jì)應(yīng)用
- 原來(lái)為硅MOSFET設(shè)計(jì)的DC-DC控制器能否用來(lái)驅(qū)動(dòng)GaNFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
圖像傳感器
陀螺傳感器
萬(wàn)用表
萬(wàn)用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無(wú)焊端子
無(wú)線充電
無(wú)線監(jiān)控
無(wú)源濾波器
五金工具