你的位置:首頁 > 電源管理 > 正文

無傳感器BLDC電機(jī)控制走向低成本

發(fā)布時(shí)間:2014-09-22 責(zé)任編輯:echolady

【導(dǎo)讀】電機(jī)在日常生活中發(fā)揮著重要作用。無刷直流 (BLDC)電機(jī)憑借勻速或變速的可靠性成為高檔系統(tǒng)的選擇。借助霍爾效應(yīng)傳感器和控制器使BLDC電機(jī)的控制更加靈活。當(dāng)前,BLDC 電機(jī)系統(tǒng)已十分常見,但是大多數(shù)系統(tǒng)仍使用傳感器來控制電機(jī)。為了降低BLDC系統(tǒng)成本,提高可靠性,除去傳感器的方案提上日程。過去的控制器需要控制器將長(zhǎng)安其所需的算法除去,而現(xiàn)在,無傳感器系統(tǒng)將會(huì)逐步取代傳感器系統(tǒng)。
 
無傳感器BLDC控制依靠BLDC電機(jī)的特性來計(jì)算轉(zhuǎn)子位置,并在此位置使電機(jī)在適當(dāng)?shù)臅r(shí)間換向。為了解釋其工作原理,我們回頭看一下BLDC 電機(jī)本身以及基本的傳感器控制。
 
從根本上講,BLDC電機(jī)使用勵(lì)磁線圈(稱為定子)在轉(zhuǎn)子(或軸)上產(chǎn)生平行于線圈軸線的磁場(chǎng),使轉(zhuǎn)子旋轉(zhuǎn)并產(chǎn)生轉(zhuǎn)矩。在三相BLDC電機(jī)中,定子中的三個(gè)線圈(或相)連續(xù)導(dǎo)通和關(guān)斷使轉(zhuǎn)子旋轉(zhuǎn)并產(chǎn)生轉(zhuǎn)矩。為使轉(zhuǎn)子保持旋轉(zhuǎn),必須在轉(zhuǎn)子旋轉(zhuǎn)到相應(yīng)位置前導(dǎo)通和關(guān)斷相關(guān)相。為了使轉(zhuǎn)子平穩(wěn)旋轉(zhuǎn),構(gòu)成電機(jī)的每個(gè)繞組或相都可由多組線圈組成。每相都必須按特定順序?qū)ê完P(guān)斷才能使轉(zhuǎn)子旋轉(zhuǎn)。轉(zhuǎn)子的位置決定了哪相需要導(dǎo)通或關(guān)斷。因此,了解轉(zhuǎn)子位置對(duì)于電機(jī)的運(yùn)行至關(guān)重要,為了使BLDC電機(jī)工作,控制器必須主動(dòng)導(dǎo)通或關(guān)斷這些相。控制器必須將定子內(nèi)的磁場(chǎng)保持在轉(zhuǎn)子之前,以保持轉(zhuǎn)子旋轉(zhuǎn)。獲取轉(zhuǎn)子位置的最簡(jiǎn)單方法是使用霍爾效應(yīng)傳感器,它們可生成脈沖將轉(zhuǎn)子位置通知給控制器。了解轉(zhuǎn)子位置后,基本BLDC控制器只需查找三個(gè)相的哪種模式對(duì)應(yīng)于轉(zhuǎn)子位置,并將這些相切換到相應(yīng)模式。
 
依靠傳感器的運(yùn)行實(shí)現(xiàn)起來非常容易,但除去傳感器可降低系統(tǒng)成本并提高可靠性。為了理解無傳感器算法如何計(jì)算轉(zhuǎn)子位置,我們進(jìn)一步了解一下BLDC電機(jī)的三個(gè)相。
 
在“梯形”控制中,在任何時(shí)刻都是一相被拉為高電平(+VBUS),一相被拉為低電平(-VBUS),第三相不活動(dòng)。由于每相的波形都像梯形  ,“梯形”控制因此而得名。當(dāng)轉(zhuǎn)子經(jīng)過某相時(shí),轉(zhuǎn)子上的永磁在該相感應(yīng)出電流,進(jìn)而產(chǎn)生稱為反電動(dòng)勢(shì)(EMF)的電壓。反電動(dòng)勢(shì)取決于每相繞組的匝數(shù)、轉(zhuǎn)子的角速度以及轉(zhuǎn)子永磁場(chǎng)的強(qiáng)度。每相的反電動(dòng)勢(shì)波形與轉(zhuǎn)子位置相關(guān),因此反電動(dòng)勢(shì)可用于確定轉(zhuǎn)子位置。
 
有許多不同方法使用反電動(dòng)勢(shì)確定轉(zhuǎn)子位置,其中最常見和最可靠的一種是過零檢測(cè)。當(dāng)其中一個(gè)反電動(dòng)勢(shì)信號(hào)轉(zhuǎn)換并過零點(diǎn)時(shí),控制器需要切換相的模式。此過程稱為換向。為使轉(zhuǎn)子保持向前轉(zhuǎn)動(dòng),在發(fā)生過零和換向之間的時(shí)間內(nèi)必須進(jìn)行相移,電機(jī)控制器必須計(jì)算和補(bǔ)償該相移。一種實(shí)現(xiàn)過零的簡(jiǎn)單方法是,假設(shè)每當(dāng)任一相的反電動(dòng)勢(shì)達(dá)到VBUS/2時(shí)就會(huì)發(fā)生過零事件。
 
利用幾個(gè)配置為比較器的運(yùn)放,可輕松實(shí)現(xiàn)該方法。但是,該方法中存在幾個(gè)問題。首先,反電動(dòng)勢(shì)通常小于VBUS,因此過零事件不一定發(fā)生在 VBUS/2。此外,每相的特性可能不同,因此一個(gè)相的過零反電動(dòng)勢(shì)電壓可能與其他相的過零反電動(dòng)勢(shì)電壓不同。最后,這個(gè)過于簡(jiǎn)單的檢測(cè)方法會(huì)導(dǎo)致檢測(cè)的反電動(dòng)勢(shì)信號(hào)出現(xiàn)正負(fù)相移。
 
在實(shí)際電機(jī)中,過零閾值電壓變化很大。幸運(yùn)的是,這個(gè)變化的閾值電壓等于電機(jī)中性點(diǎn)電壓,因?yàn)殡姍C(jī)中性點(diǎn)是全部三相反電動(dòng)勢(shì)的平均值。因此,只要任一相的反電動(dòng)勢(shì)等于電機(jī)的中性點(diǎn),就會(huì)發(fā)生過零事件且控制器需要換向。這可以通過電阻和運(yùn)放完成,或者使用控制器自身的ADC模塊和軟件實(shí)現(xiàn)。利用可編程控制器(如dsPIC系列DSC),每相的反電動(dòng)勢(shì)都可以使用ADC模塊采樣,并且利用三個(gè)反電動(dòng)勢(shì)信號(hào)的平均值可輕松使用軟件重建中性點(diǎn)。隨后,軟件可將該值與檢測(cè)到的三相的反電動(dòng)勢(shì)進(jìn)行比較,并檢測(cè)過零事件何時(shí)發(fā)生。發(fā)生過零事件后,控制器使電機(jī)換向,然后整個(gè)過程重復(fù)執(zhí)行。因此,通過使用電機(jī)的反電動(dòng)勢(shì)和檢測(cè)過零,可從系統(tǒng)中除去傳感器,同時(shí)保持相同的性能水平。
 
在實(shí)際系統(tǒng)中,無傳感器運(yùn)行方式還會(huì)遇到其他困難。首先,在低速運(yùn)行時(shí),反電動(dòng)勢(shì)非常小,很難檢測(cè)到。因此,在電機(jī)開始快速旋轉(zhuǎn),快到產(chǎn)生足夠大的反電動(dòng)勢(shì)以在無傳感器模式下運(yùn)行前,控制器必須猜測(cè)轉(zhuǎn)子位置。可軟件編程的控制器使系統(tǒng)啟動(dòng)方式可根據(jù)特定應(yīng)用進(jìn)行調(diào)整,從而減少此問題的影響。
 
另一個(gè)問題是MOSFET的開關(guān)噪聲。由于MOSFET通過開關(guān)操作來更改每相的電壓,這會(huì)將噪聲引入到由控制器ADC模塊檢測(cè)的反電動(dòng)勢(shì)中。需要過濾掉這種噪聲,以精確重建每相的反電動(dòng)勢(shì)。DSC的處理器內(nèi)建DSP引擎,可輕松處理實(shí)現(xiàn)數(shù)字濾波和消除開關(guān)噪聲所需的計(jì)算。其他挑戰(zhàn)來自特定設(shè)計(jì)的特性。但是,使用可軟件編程的控制器通常會(huì)使這些挑戰(zhàn)更容易解決,就像本文提及的兩個(gè)問題的解決方案一樣。
通過示例進(jìn)行研究和實(shí)驗(yàn)使得學(xué)習(xí)新技術(shù)更為容易。專為無傳感器BLDC控制定制的開發(fā)工具大大簡(jiǎn)化了學(xué)習(xí)過程并加快了產(chǎn)品開發(fā)。過去,利用開發(fā)工具學(xué)習(xí)需要付出昂貴的金錢和時(shí)間成本。市場(chǎng)上的新工具正在改變這一局面。
 
總之,隨著電子電機(jī)市場(chǎng)的持續(xù)增長(zhǎng),對(duì)BLDC電機(jī)系統(tǒng)的需求也將增長(zhǎng),且成本壓力將上升,基于DSC的無傳感器技術(shù)正率先滿足這些新需求,解決成本挑戰(zhàn)。

相關(guān)閱讀:

TI無傳感器的Insta SPIN-FOC電機(jī)控制
無傳感器洗衣機(jī)電機(jī)驅(qū)動(dòng)設(shè)計(jì)
無傳感器檢測(cè)的無刷直流電機(jī)控制
要采購(gòu)傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉