【干貨】開關(guān)電源RC吸收電路的分析!
發(fā)布時(shí)間:2020-02-14 責(zé)任編輯:lina
【導(dǎo)讀】我們常用的AC-DC開關(guān)電源中,由于初級(jí)線圈的漏感而再次級(jí)線圈上產(chǎn)生的瞬間反向脈沖是非常嚴(yán)重的。如下圖圖1,這是用MPS公司的MP020-5芯片搭建的AC-DC電路,這里測(cè)的是次級(jí)部分肖特基二極管兩端的波形。
一、問(wèn)題背景
我們常用的AC-DC開關(guān)電源中,由于初級(jí)線圈的漏感而再次級(jí)線圈上產(chǎn)生的瞬間反向脈沖是非常嚴(yán)重的。如下圖圖1,這是用MPS公司的MP020-5芯片搭建的AC-DC電路,這里測(cè)的是次級(jí)部分肖特基二極管兩端的波形。我們知道,肖特基二極管的最大的作用就是防止變壓器初級(jí)線圈的瞬態(tài)反向脈沖通過(guò)次級(jí)線圈對(duì)后級(jí)電路造成沖擊,如果在芯片啟動(dòng)之后,后級(jí)肖特基二極管因?yàn)闊o(wú)法承受反向沖擊脈沖而造成短路,那么開關(guān)電源芯片會(huì)被瞬間擊穿。這里我是用的變壓器初級(jí)次級(jí)比值為1:3,而我們一般的反向瞬間脈沖約為700~1000V,甚至更多,我們根實(shí)際測(cè)得的波形可以看出,次級(jí)線圈的最大反向脈沖電壓為224V左右。我們?cè)诤芏嗟腁C-DC電源方案中都可以看到肖特基二極管并聯(lián)一個(gè)RC電路,但是我們不知道這兩個(gè)元器件的值怎么去選,因?yàn)閷?shí)際的設(shè)計(jì)中,我們不一定會(huì)按照方案中要求去選用一模一樣的變壓器,就比如MPS020-5推薦的變壓器匝數(shù)比為1:11,但是考慮到實(shí)際變壓器的體積,我們改為1:3,那么這個(gè)匝數(shù)比的改變會(huì)導(dǎo)致次級(jí)反向瞬間脈沖的不同,那么對(duì)于肖特基二極管的反向承受電壓就有一個(gè)嚴(yán)格的要求。那么如何能讓RC真正的起到作用而減少肖特基二極管的成本,或者說(shuō)這個(gè)RC到底起一個(gè)什么作用。本文以實(shí)驗(yàn)的角度和大家一起討論這個(gè)問(wèn)題。
附:MP020-5開關(guān)電源原理圖
二、分析問(wèn)題
從系統(tǒng)控制理論的角度出發(fā),我們將這個(gè)次級(jí)的電路進(jìn)行模型化,如圖2和圖3。
這里由于電容具有開關(guān)電源開啟瞬間短路的性質(zhì),所以R12和R15的后級(jí)都被短路了,等效電容C0為E3、E5電容并聯(lián)再與C2串聯(lián)。而電容串聯(lián)的計(jì)算是等效為電阻并聯(lián)的計(jì)算,即串聯(lián)的電容越小,等效電容越小,所以我們直接按最小的電容C2進(jìn)行計(jì)算,即等效電容C0為1.2nF,電感為變壓器的次級(jí)線圈,電阻R8(等效電阻為R0)為我們需要測(cè)定的值。
根據(jù)基爾霍夫電壓定律寫出RLC串聯(lián)諧振的微分方程,再進(jìn)行拉普拉斯變化可以看出,這個(gè)模型我們可以發(fā)現(xiàn)這是一個(gè)RLC串聯(lián)諧振電路,在控制系統(tǒng)中這是一個(gè)典型的二階系統(tǒng),具體的公式推導(dǎo)見圖4和圖5。
這是一個(gè)典型的二階連續(xù)系統(tǒng),我們?cè)俅螌徱曔@個(gè)波形圖圖6可以發(fā)現(xiàn),這是一個(gè)瞬態(tài)響應(yīng)圖像。瞬態(tài)響應(yīng)即在開關(guān)電源開啟的瞬間產(chǎn)生的響應(yīng)。
二階系統(tǒng)下,瞬態(tài)響應(yīng)主要表現(xiàn)為三種狀態(tài):欠阻尼、臨界阻尼、過(guò)阻尼。
欠阻尼響應(yīng)的曲線圖圖7
欠阻尼由于阻尼不夠,系統(tǒng)在響應(yīng)瞬間會(huì)超過(guò)穩(wěn)態(tài)值,然后慢慢的通過(guò)振蕩來(lái)跌落到穩(wěn)態(tài)值,上圖的曲線表現(xiàn)出來(lái)的就是欠阻尼的狀態(tài)。也就是說(shuō),我們的電壓本來(lái)應(yīng)該達(dá)不到224V,但是在一個(gè)慣性的作用下,系統(tǒng)在達(dá)到了穩(wěn)定值之后超過(guò)了穩(wěn)定值,達(dá)到了一個(gè)最大值,然后慢慢落下維持在穩(wěn)定值的范圍內(nèi)。
臨界阻尼響應(yīng)的曲線圖圖8
臨界阻尼下由于阻尼剛剛夠,系統(tǒng)在響應(yīng)瞬間慢慢的上升到穩(wěn)態(tài)值,不會(huì)產(chǎn)生慣性,我們的所需要的就是這樣一種波形。
RLC串聯(lián)諧振的拉普拉斯變換公式推導(dǎo)如圖圖9
我們通過(guò)電橋測(cè)得L的值為260mH,L的值為變壓器次級(jí)線圈的電感值,C為1.2nF,帶入求出電阻R為1658Ω。
三、測(cè)試驗(yàn)證
根據(jù)得到的理論值可以得到在1658歐姆左右可以達(dá)到臨界阻尼,由于實(shí)際中手邊沒(méi)有1658歐姆的電阻,最大只有357歐姆,而焊盤只夠放兩個(gè)電阻串聯(lián),所以我將兩個(gè)357歐姆的電阻串聯(lián)得到714歐姆的電阻,然后將電路進(jìn)行測(cè)試,下圖為測(cè)得的波形圖圖10。
可以看出系統(tǒng)在響應(yīng)瞬間就很快的達(dá)到了穩(wěn)態(tài),而之前出現(xiàn)的欠阻尼的沖擊脈沖也被消除了,而反向電壓也被鉗制在-156V,當(dāng)然了這個(gè)阻值不能太大,在達(dá)到一定的值之后,系統(tǒng)會(huì)越過(guò)臨界阻尼,這個(gè)電阻的選值是一個(gè)范圍。另外還有一個(gè)就是這里的電容也要盡量的小,在nF級(jí),如果太大會(huì)造成芯片爆炸??偟膩?lái)說(shuō),在確定好RC的值之后,我們可以有效的抑制次級(jí)反向脈沖由于慣性對(duì)肖特基二極管造成的更大的電壓沖擊。這樣做的好處可以讓我們理解RC存在的理由,當(dāng)然還可以節(jié)約物料成本。之前使用的物料為SS320肖特基二極管,反向承受電壓為200V,經(jīng)常爆板,后來(lái)使用了ES3G,反向承受電壓為400V,雖然可以用但是物料比較貴。通過(guò)這種簡(jiǎn)單的辦法可以更好的節(jié)約成本。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
- 看完CES看CITE 2025開年巨獻(xiàn)“圳”聚創(chuàng)新
- 傳感器和轉(zhuǎn)換器的設(shè)計(jì)應(yīng)用
- 原來(lái)為硅MOSFET設(shè)計(jì)的DC-DC控制器能否用來(lái)驅(qū)動(dòng)GaNFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
圖像傳感器
陀螺傳感器
萬(wàn)用表
萬(wàn)用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無(wú)焊端子
無(wú)線充電
無(wú)線監(jiān)控
無(wú)源濾波器
五金工具