采用具有驅(qū)動器源極引腳的低電感表貼封裝的SiC MOSFET
發(fā)布時(shí)間:2021-02-03 來源:ROHM 責(zé)任編輯:wenwei
【導(dǎo)讀】人們普遍認(rèn)為,SiCMOSFET可以實(shí)現(xiàn)非??斓?a target="_blank" style="text-decoration:none;" >開關(guān)速度,有助于顯著降低電力電子領(lǐng)域功率轉(zhuǎn)換過程中的能量損耗。然而,由于傳統(tǒng)功率半導(dǎo)體封裝的限制,在實(shí)際應(yīng)用中并不總是能發(fā)揮SiC元器件的全部潛力。在本文中,我們首先討論傳統(tǒng)封裝的一些局限性,然后介紹采用更好的封裝形式所帶來的好處。最后,展示對使用了圖騰柱(Totem-Pole)拓?fù)涞?.7kW單相PFC進(jìn)行封裝改進(jìn)后獲得的改善效果。
功率元器件傳統(tǒng)封裝形式帶來的開關(guān)性能限制
TO-247N(圖1)是應(yīng)用最廣泛的功率晶體管傳統(tǒng)封裝形式之一。如圖1左側(cè)所示,該器件的每個(gè)引腳都存在寄生電感分量。圖1右側(cè)是非常簡單且典型的柵極驅(qū)動電路示例。從這些圖中可以看出,漏極引腳和源極引腳的電感分量會被加到主電流開關(guān)電路中,這些電感會導(dǎo)致器件在關(guān)斷時(shí)產(chǎn)生過電壓,因此要想確保過電壓的數(shù)值滿足漏極-源極間技術(shù)規(guī)格的要求,就需要限制器件的開關(guān)速度。
圖1:功率元器件的傳統(tǒng)封裝及其寄生電感
柵極引腳和源極引腳的寄生電感是柵極驅(qū)動電路中的一部分,因此在驅(qū)動MOSFET時(shí)需要考慮這部分電感。此外,這部分電感還可能會與柵極驅(qū)動電路中的寄生電容之間發(fā)生振蕩。當(dāng)MOSFET導(dǎo)通時(shí),ID增加,并且在源極引腳的電感(Ls)中產(chǎn)生電動勢(VLS)。而柵極引腳中則流入電流(IG),并且因柵極電阻(RG)而發(fā)生電壓降。由于這些電壓包含在柵極驅(qū)動電路中,因此它們會使MOSFET導(dǎo)通所需的柵極電壓降低,從而導(dǎo)致導(dǎo)通速度變慢,見圖2。
圖2:LS導(dǎo)致芯片中的VGS降低(導(dǎo)通時(shí))
解決這種問題的方法之一是采用具備“驅(qū)動器源極”引腳的功率元器件封裝。通過配備將源極引腳和柵極驅(qū)動環(huán)路分開的驅(qū)動器源極引腳,可以消除導(dǎo)通時(shí)的源極電感(LS)對柵極電壓的影響,因此不會因電壓降而降低導(dǎo)通速度,從而可以大大減少導(dǎo)通損耗。
TO-263-7L帶來的開關(guān)性能改善
除了TO-247-4L封裝外,羅姆還開發(fā)出采用TO-263-7L表貼封裝,使分立SiC MOSFET產(chǎn)品陣容更加豐富。采用TO-263-7L封裝可以實(shí)現(xiàn)SiC MOSFET源極引腳的開爾文連接,這種封裝的優(yōu)點(diǎn)如圖3所示。從圖中可以看出,柵極驅(qū)動相關(guān)的部分和主電流路徑不再共享主源極側(cè)的電感LS。因此,可以使器件的導(dǎo)通速度更快,損耗更小。
圖3:TO-263-7L表貼封裝及其寄生電感
采用TO-263-7L封裝的另一個(gè)優(yōu)點(diǎn)是漏極引腳和源極引腳的電感比TO-247N封裝小得多。由于漏極引腳的接合面積大,另外源極引腳可以由多根短引線并聯(lián)連接組成,因此可以降低封裝的電感(LD或LS)。為了量化新封裝形式帶來的元器件性能改進(jìn)程度,我們比較了采用兩種不同封裝的相同SiC MOSFET芯片的導(dǎo)通和關(guān)斷時(shí)的開關(guān)動作(圖4)。
圖4:1200V/40mΩ SiC MOSFET的開關(guān)動作比較
(TO-247N:SCT3040KL、TO-263-7L:SCT3040KW7、VDS=800V)
導(dǎo)通時(shí)的開關(guān)瞬態(tài)曲線表明,采用三引腳封裝(TO-247N)的“SCT3040KL”的開關(guān)速度受到限制,其中一個(gè)原因是源極引腳的電動勢使有效柵極電壓降低,導(dǎo)致電流變化時(shí)間變長,從而造成導(dǎo)通損耗增加。而對于采用具備驅(qū)動器源極的表貼封裝(TO-263-7L)的“SCT3040KW7”來說,電流變化時(shí)間則變得非常短,因此可以減少導(dǎo)通損耗。另外,由于寄生電感減少,因此采用TO-263-7L封裝的SiC MOSFET在關(guān)斷時(shí)的dI/dt要高得多,因此關(guān)斷損耗也小于TO-247N封裝。
下圖展示了兩種封裝實(shí)現(xiàn)的開關(guān)損耗與開關(guān)電流之間的關(guān)系。顯然,TO-263-7L封裝器件導(dǎo)通速度的提高有助于降低開關(guān)損耗,尤其是在大電流區(qū)域效果更加明顯。
圖5:采用TO-247N封裝和TO-263-7L封裝的1200V/40mΩ SiC MOSFET的開關(guān)損耗比較
【柵極驅(qū)動電路:使用了米勒鉗位(MC)和浪涌鉗位用的肖特基勢壘二極管(SBD)】
如上述比較數(shù)據(jù)所示,具有可以連接至柵極驅(qū)動環(huán)路的驅(qū)動器源極引腳,并可以減小寄生電感的封裝,器件性能得以發(fā)揮,特別是在大電流區(qū)域中發(fā)揮得更好。所以,在相同的開關(guān)頻率下器件總損耗更小;另外,如果降低損耗不是主要目標(biāo),則還可以增加器件的開關(guān)頻率。
新表貼封裝產(chǎn)品的陣容
除了上文提到的1200V/40mΩ產(chǎn)品之外,羅姆產(chǎn)品陣容中還包括額定電壓分別為650V和1200V 的TO-263-7L 封裝SiC MOSFET產(chǎn)品(表1)。另外,符合汽車電子產(chǎn)品可靠性標(biāo)準(zhǔn)的車載級產(chǎn)品也在計(jì)劃中。
表1:TO-263-7L封裝的溝槽SiC MOSFET產(chǎn)品陣容
表貼封裝SiC MOSFET在車載充電器(OBC)中的適用性
本文將以一個(gè)3.7kW單相PFC的電路為應(yīng)用案例來說明表貼封裝SiC MOSFET能夠?qū)崿F(xiàn)的性能。這種功率級單相PFC可用作單相3.7kW車載充電器的輸入級,或用作11kW車載充電系統(tǒng)的構(gòu)件。在后一種情況下,將三個(gè)單相PFC通過開關(guān)矩陣相組合,可以實(shí)現(xiàn)單相驅(qū)動或最大11kW的三相驅(qū)動。該應(yīng)用案例框圖參見圖6。
圖6:多個(gè)3.7kW PFC組成的11kW OBC框圖
圖7中包括幾種可應(yīng)用的PFC電路拓?fù)浣Y(jié)構(gòu)。傳統(tǒng)升壓PFC的輸入端存在二極管整流電路,因此其效率提升受到限制。兩相無橋PFC以及圖騰柱PFC可以削減二極管整流電路,從而可以降低總傳導(dǎo)損耗。但是需要注意的是,兩相無橋PFC雖然可實(shí)現(xiàn)高效率,卻存在每個(gè)橋臂僅在一半輸入周期內(nèi)使用的缺點(diǎn),因此每個(gè)器件的峰值電流與電流有效值之比(即所謂的“波峰因數(shù)”)增高,使功率半導(dǎo)體上的功率循環(huán)壓力很大。
圖7:單相PFC的概念圖
圖騰柱PFC有兩種不同的類型。最簡單的類型僅包含兩個(gè)MOSFET和兩個(gè)二極管。由于二極管在低頻下開關(guān),因此選擇具有低正向壓降的器件。另一方面,由于MOSFET中的體二極管用于換流,因此選擇體二極管特性出色的器件是非常重要的。此外,新型寬帶隙半導(dǎo)體(比如SiC MOSFET)具有支持硬開關(guān)的體二極管,因此非常適用于這類應(yīng)用。最后,如果希望盡可能獲得更出色的性能,那么可以用有源開關(guān)(比如SJ MOSFET)來替代低頻開關(guān)二極管,以進(jìn)一步降低損耗。
為了展示利用圖騰柱PFC可以實(shí)現(xiàn)的幾種性能,我們實(shí)施了仿真。在仿真中,我們對采用TO-263-7L 封裝的650V/60mΩ SiC MOSFET的開關(guān)損耗測量值進(jìn)行了驗(yàn)證。假設(shè)開關(guān)頻率為100 kHz,我們對高頻側(cè)橋臂和低頻側(cè)橋臂的半導(dǎo)體損耗都進(jìn)行了建模。對于低頻橋臂,由于開關(guān)損耗的影響極小,因此僅考慮了60mΩ產(chǎn)品的導(dǎo)通損耗。
仿真結(jié)果如圖8所示。從圖中可以看出,最大效率為98.7%,出現(xiàn)在60%的標(biāo)稱輸出功率附近。該階段的其他損耗沒有建模。當(dāng)然,為了進(jìn)行全面分析,不僅需要考慮控制電路和柵極驅(qū)動電路,還需要考慮電感和其他無源元件的損耗。然而,很明顯,在使用了650V SiC MOSFET的圖騰柱PFC中,可以實(shí)現(xiàn)高性能的PFC電路。
圖8:僅考慮半導(dǎo)體損耗的圖騰柱PFC的估算效率
(Vin = 230V,Vout = 400V,fSW = 100 kHz,高頻側(cè)橋臂:SCT3060AW7,低頻側(cè)橋臂:60m?產(chǎn)品)
結(jié)語
在本文中,我們確認(rèn)了SiC MOSFET采用具備驅(qū)動器源極引腳的低電感表貼封裝所帶來的性能優(yōu)勢。研究結(jié)果表明,尤其是在大電流條件下,由于柵極環(huán)路不受dI/dt以及源極引腳電感導(dǎo)致的電壓降的影響,因此采用表貼封裝的產(chǎn)品導(dǎo)通損耗大大降低。封裝電感的總體減小還使得SiC MOSFET的關(guān)斷速度加快。這兩個(gè)優(yōu)點(diǎn)顯著降低了器件導(dǎo)通和關(guān)斷時(shí)的開關(guān)損耗。在系統(tǒng)方面,我們已經(jīng)看到,圖騰柱PFC中采用RDS(ON)為60mΩ的650V SiC MOSFET時(shí)的轉(zhuǎn)換效率超過98%,這將有利于實(shí)現(xiàn)非常緊湊的設(shè)計(jì),因此可以說,這對于車載充電器等車載應(yīng)用開發(fā)來說是非常重要的關(guān)鍵點(diǎn)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 破局時(shí)效,跨越速運(yùn)領(lǐng)航零擔(dān)快運(yùn)新征途
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池