你的位置:首頁(yè) > 電源管理 > 正文

具備出色穩(wěn)定性的CoolSiC MOSFET M1H

發(fā)布時(shí)間:2022-06-21 來(lái)源:英飛凌 責(zé)任編輯:wenwei

【導(dǎo)讀】過(guò)去幾年,實(shí)際應(yīng)用條件下的閾值電壓漂移(VGS(th))一直是SiC的關(guān)注重點(diǎn)。英飛凌率先發(fā)現(xiàn)了動(dòng)態(tài)工作引起的長(zhǎng)期應(yīng)力下VGS(th)的漂移現(xiàn)象,并提出了工作柵極電壓區(qū)域的建議,旨在最大限度地減少使用壽命內(nèi)的漂移。[1]。


引言


過(guò)去幾年,實(shí)際應(yīng)用條件下的閾值電壓漂移(VGS(th))一直是SiC的關(guān)注重點(diǎn)。


英飛凌率先發(fā)現(xiàn)了動(dòng)態(tài)工作引起的長(zhǎng)期應(yīng)力下VGS(th)的漂移現(xiàn)象,并提出了工作柵極電壓區(qū)域的建議,旨在最大限度地減少使用壽命內(nèi)的漂移。[1]。


經(jīng)過(guò)不斷研究和持續(xù)優(yōu)化,現(xiàn)在,全新推出的CoolSiC? MOSFET M1H在VGS(th)穩(wěn)定性方面有了顯著改善,幾乎所有情況下的漂移效應(yīng)影響,都可以忽略不計(jì)。


現(xiàn)象描述


VGS(th)漂移現(xiàn)象通常是通過(guò)高溫柵極偏置應(yīng)力測(cè)試(DC-HTGS)來(lái)進(jìn)行描述的,該測(cè)試遵循JEDEC等標(biāo)準(zhǔn)定義的測(cè)試準(zhǔn)則進(jìn)行。


近期的研究結(jié)果表明,與相應(yīng)的靜態(tài)柵極應(yīng)力測(cè)試(DC-HTGS)相比,包括V_(GS(off))<0V在內(nèi)的正負(fù)電源驅(qū)動(dòng),交流AC柵極應(yīng)力引起的閾值電壓漂移更高,這一發(fā)現(xiàn)為SiC MOSFET器件的可靠性帶來(lái)了新視角[1,3]。


圖1顯示了交流(AC)和直流(DC)應(yīng)力條件下的不同影響。VGS(th) (ΔVth)的數(shù)據(jù)變化是使用數(shù)據(jù)表[1]中的最大條件得出的。


圖中可以看到兩個(gè)不同的斜率,第一個(gè)對(duì)應(yīng)的是典型的類似直流DC的漂移行為(“直流擬合”);第二個(gè)更大的斜率對(duì)應(yīng)的是正負(fù)電源的交流AC應(yīng)力效應(yīng)(“交流擬合”),也稱柵極開(kāi)關(guān)不穩(wěn)定性(GSI)。


1.png

圖1:連續(xù)柵極開(kāi)關(guān)應(yīng)力期間的漂移:

VGS,(on)=20V;VGS(off)=?10V;

Tvj,max=150°C and f=500kHz.[1]


我們的結(jié)論是:開(kāi)關(guān)周次數(shù)超過(guò)10?的應(yīng)力條件下,交流漂移是造成應(yīng)力的主要原因;開(kāi)關(guān)周次數(shù)較少時(shí),直流漂移是造成應(yīng)力的主要原因。


數(shù)據(jù)顯示,開(kāi)關(guān)應(yīng)力會(huì)導(dǎo)致VGS(th)隨時(shí)間緩慢增加。由于閾值電壓VGS(th)增加,可以觀察到溝道電阻(Rch)的增加。這種現(xiàn)象由等式(1)描述,式中,L是溝道長(zhǎng)度,W是溝道寬度,μn是電子遷移率,Cox是柵極氧化層電容,VGS(on)是導(dǎo)通狀態(tài)柵極電壓,VGS(th)是器件的閾值電壓[1]。


1655107765172368.png


總RDS(on)是由各電阻的總和決定的,即溝道電阻(Rch)、結(jié)型場(chǎng)效應(yīng)晶體管電阻(RJFET)、漂移區(qū)的外延層電阻(Repi)和高摻雜SiC襯底的電阻(RSub)。等式(2)描述了總RDS(on)的整個(gè)組成。


因此,VGS(th)的增加會(huì)導(dǎo)致溝道電阻略有提高,從而造成RDS(on)提高,以及久而久之產(chǎn)生的導(dǎo)通損耗。


1655107752986148.png


柵極開(kāi)關(guān)應(yīng)力


為了確保和預(yù)測(cè)我們的CoolSiC? MOSFET在典型開(kāi)關(guān)工作期間電氣參數(shù)的長(zhǎng)期穩(wěn)定性,我們開(kāi)發(fā)并采用了一種新的應(yīng)力測(cè)試:柵極開(kāi)關(guān)應(yīng)力測(cè)試(GSS)。該測(cè)試可以讓您直接確定電氣參數(shù)漂移,這些漂移通常在正負(fù)驅(qū)動(dòng)電壓模式下運(yùn)行(正V(GS,on):導(dǎo)通;負(fù)VGS(OFF):關(guān)斷)。該測(cè)試可以讓開(kāi)發(fā)人員量化上述新的失效機(jī)制,因此,是鑒定SiC MOSFET的必要條件。


GSS測(cè)試涵蓋了所有重要的漂移現(xiàn)象,包括在器件正常工作期間發(fā)生的漂移現(xiàn)象。除了缺失的負(fù)載電流(它本身不會(huì)改變我們所觀察到的漂移行為)[3],我們通過(guò)保持與典型應(yīng)用條件相似的柵極開(kāi)關(guān)特性(例如,電壓斜率),盡可能地模擬應(yīng)用(參見(jiàn)圖2)[1]。為了涵蓋在實(shí)際SiC MOSFET應(yīng)用中非常常見(jiàn)的柵極信號(hào)過(guò)沖和下沖的潛在影響,我們通過(guò)在數(shù)據(jù)表所允許的最大柵極電壓和最大靜態(tài)結(jié)溫(Tvj,op)下施加應(yīng)力,來(lái)實(shí)現(xiàn)最壞情況。


4.png

圖2:頻率f=500kHz時(shí),典型的GSS柵源應(yīng)力信號(hào)。[1]


在最壞情況下進(jìn)行測(cè)試,可以讓客戶確信自己能夠在整個(gè)規(guī)格范圍內(nèi)使用該器件,而不會(huì)超過(guò)漂移極限。因此,這種方法保證了器件的出色可靠性,同時(shí)也便于安全裕度的計(jì)算。


除了VGS(th),柵極漏電流IGSS等其他參數(shù)也得到了測(cè)量,并在被測(cè)硬件上保持一致[1]。


最壞情況的壽命終止漂移評(píng)估及其對(duì)應(yīng)用的影響


在開(kāi)發(fā)逆變器的過(guò)程中,一大任務(wù)就是預(yù)測(cè)設(shè)備的使用壽命。因此,必須提供可靠的模型和信息。在各種工作條件下,進(jìn)行了大量的測(cè)試后,我們就能開(kāi)發(fā)出一個(gè)預(yù)測(cè)性的半經(jīng)驗(yàn)性模型,該模型描述了閾值電壓隨任務(wù)曲線參數(shù)的變化,例如:應(yīng)力時(shí)間(tS)、柵極偏置低電平(VGS(off))、柵極偏置高電平(VGS(on)),開(kāi)關(guān)頻率(fsw)和工作溫度(T)(ΔVGS(th) (tS,VGS(off),VGS(on),fsw,T))[3]。


基于該模型,我們建立了一種評(píng)估閾值電壓漂移的方法,使用最壞情況壽命終止曲線(EoAP)來(lái)計(jì)算相對(duì)R(DS(on))漂移。在應(yīng)用中,以任意頻率運(yùn)行一定時(shí)間,我們可以計(jì)算出至EoAP之前的開(kāi)關(guān)周期總數(shù)(NCycle)。然后,使用NCycle讀出相對(duì)RDS(on)漂移。


周期數(shù)取決于開(kāi)關(guān)頻率和工作時(shí)間。典型的硬開(kāi)關(guān)工業(yè)應(yīng)用(例如,太陽(yáng)能組串逆變器)使用16-50 kHz的開(kāi)關(guān)頻率。使用諧振拓?fù)涞哪孀兤鞯拈_(kāi)關(guān)速度通常超過(guò)100kHz。這些應(yīng)用的目標(biāo)壽命通常在10-20年,而實(shí)際工作時(shí)間通常在50%-100%。


以下示例提供了一個(gè)樣品評(píng)估:


●    目標(biāo)壽命[年]:20

●    實(shí)際工作時(shí)間[%]:50%=>10年

●    實(shí)際工作時(shí)間[s]:315,360,000s(10年)

●    開(kāi)關(guān)頻率[kHz]:48

●    周期持續(xù)時(shí)間[s]:1/開(kāi)關(guān)頻率=0.0000208

●    壽命終止時(shí)的周次數(shù)=~1.52E+13


導(dǎo)通電壓為18V時(shí),預(yù)計(jì)25°C時(shí)的RDS(on)的相對(duì)變化小于6%,175°C時(shí)小于3%,見(jiàn)圖3(圖3中的綠點(diǎn))。


5.jpg

圖3:VGS(on)=18V、Tvj,op=25°C、125°C和175°C [2]時(shí)的相對(duì)RDS(on)變化


圖4示例基于最近推出的EasyPACK? FS55MR12W1M1H_B11(DC-AC逆變器中的三相逆變橋配置),說(shuō)明了RDS(on)預(yù)測(cè)變化的影響[4]。這個(gè)例子是在損耗分布中,傳導(dǎo)損耗(Pcon)占比很大的應(yīng)用。Tvj,op從最初的148°C到150°C的最壞情況EoAP僅上升2K。結(jié)果證明,哪怕是使用了20年后,RDS(on)的輕微變化導(dǎo)致的Tvj,op增加也可以忽略不計(jì)。


1655107716896883.png

圖4.最壞情況EoL評(píng)估:Vdc:800V,Irms:18A,fout:50Hz,fsw:50kHz,cos(φ):1,Th=80°C。

圖中文字:

Power loss:功率損耗

Initial point:初始點(diǎn)

Worst-case EoAP:最壞情況EoAP


這種方法意味著,最大漂移應(yīng)當(dāng)是在所描述的最壞情況下出現(xiàn)的。借助全新的M1H芯片,客戶將能從數(shù)據(jù)表的規(guī)格范圍中,選擇最適用于其應(yīng)用的參數(shù)。柵極信號(hào)中的寄生過(guò)沖和下沖不會(huì)影響漂移,無(wú)需從應(yīng)用的角度考慮。因此,可以節(jié)省時(shí)間和精力。


請(qǐng)注意:在控制良好的柵極偏置電平下運(yùn)行的應(yīng)用,遠(yuǎn)低于數(shù)據(jù)表的最大限制,例如,+18V/-3V,在相同的開(kāi)關(guān)周期數(shù)下,RDS(on)的變化幅度甚至更小。


結(jié)論


我們通過(guò)在各種開(kāi)關(guān)條件下進(jìn)行長(zhǎng)期的測(cè)試,研究了在實(shí)際應(yīng)用條件下的閾值電壓特性。我們開(kāi)發(fā)并采用了一種應(yīng)力測(cè)試程序,來(lái)確定在現(xiàn)實(shí)的應(yīng)用開(kāi)關(guān)條件下,最壞情況EoAP參數(shù)漂移,為我們的客戶提供了可靠的預(yù)測(cè)模型。


除了其他關(guān)鍵的改進(jìn)外,最近推出的1200V CoolSiC? MOSFET,即M1H,還顯示出了出色的穩(wěn)定性,并降低了漂移現(xiàn)象的影響。


參考文獻(xiàn)


[1] 英飛凌應(yīng)用說(shuō)明 2018-09


[2] P. Salmen, M. W. Feil, K. Waschneck, H.Reisinger, G. Rescher, T. Aichinger: 一種新的測(cè)試程序,可實(shí)際評(píng)估 SiC MOSFET 在開(kāi)關(guān)運(yùn)行中的壽命終止電氣參數(shù)穩(wěn)定性;2021 IEEE 國(guó)際可靠性物理研討會(huì)(IRPS)(2021 年)


[3] 英飛凌:白皮書 08-2020:英飛凌如何控制和確保 SiC 基功率半導(dǎo)體的可靠性,第 11–21 頁(yè);


[4] 數(shù)據(jù)表 FS55MR12W1M1H_B11



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:


面對(duì)電磁輻射干擾,如何輕松進(jìn)行電子線路設(shè)計(jì)布局?

臨床級(jí)可穿戴遭遇電量危機(jī)?新型結(jié)構(gòu)傳感器IC了解下

USB供電的5.8 GHz RF LNA接收器,帶輸出功率保護(hù)功能

如何有效地比較CMOS開(kāi)關(guān)和固態(tài)繼電器的性能

功率半導(dǎo)體冷知識(shí)之二:IGBT短路時(shí)的損耗

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉