【導讀】隨著電動汽車的發(fā)展,車載音響系統(tǒng)的信道的數(shù)量和輸出功率均在逐步上升。在影音娛樂系統(tǒng)中,高通道數(shù)量和高輸出功率的音響系統(tǒng),可以產(chǎn)生更大的音壓和動態(tài)范圍,包裹感空間感更強,進而實現(xiàn)劇場效果的360度立體環(huán)繞聲。除車載娛樂外,車載音響系統(tǒng)還具備許多功能。電動汽車相比傳統(tǒng)內(nèi)燃機汽車安靜,為保護行人減少事故發(fā)生,所有新型電動車需要有一個發(fā)出適當聲音的聲學車輛報警系統(tǒng)(AVAS)。另外,在緊急呼叫(Ecall)系統(tǒng)中,音響系統(tǒng)可以通過觸發(fā)防撞提示和車輛偏離警告,讓駕駛員和緊急調(diào)度員取得聯(lián)系。音響系統(tǒng)中包含許多部分,除喇叭外,還有功率放大器、 ADC、Codec等等。其中,D類功率放大器以高輸出功率,高效率,小體積等優(yōu)點,在車載音響領域異軍突起。
圖1. 座艙音響系統(tǒng)喇叭分布圖
在數(shù)字D類功放剛上電或功放播放狀態(tài)切換時,人耳偶爾會聽到“嘣”的聲音,我們把這個爆破的聲音稱為pop noise。數(shù)字功放pop noise 出現(xiàn)的原因有很多,本文主要分析pop noise出現(xiàn)原因,并提供相應解決方法。
1)電容充放電
圖2.單端功放結構示意圖
圖2所示為單端輸入功放,A1是比較放大器,用于設置增益,增強輸入信號的負載能力。A2輸出同A1輸出完全反向。Modulator用于信號調(diào)制,將輸入的模擬信號與三角波比較,生成PWM波驅動外圍MOS。比較放大器A1的一端直連參考電壓Vref,另一端通過RIN、CIN連接輸入音頻信號。在系統(tǒng)上電時,Vref立刻上升到參考電壓值,而A1的另一端則需要通過給RIN、CIN充電,在經(jīng)一段時間后才能上升到參考電壓值。A1兩端的電壓差經(jīng)放大后,輸出產(chǎn)生pop noise。該場景下可通過降低輸入電容值,如換成1uf或0.47uf來實現(xiàn)降低 pop noise。
對于差分功放而言,如果P端和N端的輸出外圍硬件電路不匹配或者輸入外圍硬件電路不匹配,功放兩端輸入信號建立時間會不一樣,該差分信號差也會輸入功放并形成pop音。 如下圖所示,若A1兩端電壓上升速度一致,pop noise為0。5ns的信號建立時間差即可產(chǎn)生人耳可聽到的pop音。
圖3 不同充電速度下的POP Noise
如圖4所示,VR_ANA的電壓由AVDD經(jīng)LDO轉換而來,這會導致VR_ANA的電壓比AVDD上升慢。此處通過把AVDD 3.3V電阻分壓得到 1.5V ,在 VR_ANA 上放置一預偏置電壓,確保VR_ANA 與 3.3V 同時上升,進而降低pop noise。其中,電容器用于消除 3.3V 的噪聲。
圖4. POP noise 抑制電路
2)PWM啟停
在系統(tǒng)掉電或上電,功放播放狀態(tài)切換,或輸入音源切換時,PWM會產(chǎn)生啟停,進而產(chǎn)生瞬態(tài)的POP音。如下圖所示,在連續(xù)PWM動作時,開關頻率及其附近的鏡像頻率都可以順利的被LC濾波器濾除。而在PWM啟停時,開關頻率及其奇次諧波會延伸到人耳可聽的20-2kHz范圍內(nèi)。該開關頻率低于LC濾波器的截止頻率,不能被濾除進而產(chǎn)生pop音。
圖5. 連續(xù)PWM及PWM啟動的時頻域圖
對于BTL結構的功放在進行AD調(diào)制時,PWM開啟第一個Duty cycle,如果A-side拉低,Bootstrap 電容可以順利充電,但B-side在此時拉高,這使得Bootstrap電容充電失敗。Bootstrap電容提供N MOSFET的充電電壓,如Bootstrap電容充電失敗,則B-side 第一個PWM不能正常輸出。A-side和B-side的不平衡輸出會產(chǎn)生明顯的POP音。 TI針對該類pop noise進行了優(yōu)化,在AD和BD調(diào)制中,都使得第一個PWM為低,進而消除Clock fault。
圖6 AD調(diào)制PWM開啟示意圖
3)上下電順序錯誤
音頻系統(tǒng)有嚴格的上下電順序。通常功放的供電電壓會比SOC的供電電壓高,也比SOC電壓建立時間早。為避免pop noise在SOC上電及功放上電時發(fā)生,要保持功放為Hi-zi/standby狀態(tài),且待功放充分充電后(20ms),再開啟PWM波,輸入音源。同理在功放斷電時,為避免掉電速度不一致,我們需要Mute 并將Standby引腳拉低15ms后再進行掉電。TI 的PurePath Digital 具有優(yōu)化后的啟動序列,這使得可聽音頻帶的pop音盡可能小。
4)PVDD電壓/Gain值急速抬升
PVDD電壓急劇上升或Gain值急速抬升均會導致pop noise 出現(xiàn)。在進行原理圖繪制時,需要將Cstart軟啟動電容設置在合理的范圍內(nèi),防止PVDD急速上升。此外,針對某些功放在開機第一次POP noise出現(xiàn)后,還出現(xiàn)了第二次pop noise。這是因為功放在上電后,增益值會以一定步長爬升到設定增益,如果步長設定值過大,會導致pop noise的出現(xiàn)。
5)Hizi-play 狀態(tài)切換Clock Fault
如果喇叭不僅僅在開機或者狀態(tài)轉換時出現(xiàn)pop 音,而是當功放從Hi-zi切換到play時,連續(xù)出現(xiàn)POP noise,此時應當檢查是否出現(xiàn)Clock Fault。硬件工程師可以斷開SOC的IIC控制,并將IIC通過USB轉接板連接到PPC3進行Clock Fault檢驗。
若此時出現(xiàn)Clock Fault 應檢查輸入音頻信號I2S/TDM是否滿足數(shù)據(jù)手冊的要求(見數(shù)據(jù)手冊Electrical Characteristics 中Serial Audio Port)。此外,數(shù)據(jù)手冊中還有其他特殊情況的說明,以TAS6424L/M-Q1系列為例,如果客戶將SCLK和MCLK連接到一起,F(xiàn)SYNC需要為2 MCLK以上。若SOC為高通8155系列,F(xiàn)YSNC輸出共有3個選項:第一是2MCLK ,第二是50% duty cycle ,第三為1 slot,我們可以選擇后兩項作為FSYNC輸入。
德州儀器TAS6424E-Q1是一款采用2.1MHz開關頻率的四通道數(shù)字輸入D類音頻放大器。在成本方面,該芯片工作頻率為2.1MHz,這使得芯片可以使用體積更小,成本更低的LC濾波器,進而實現(xiàn)整體成本優(yōu)化。在提高開關頻率的同時, TI TAS6424E-Q1芯片通過展頻及PWM序列優(yōu)化具備良好的EMI表現(xiàn)。另外,該芯片集成了AC、DC故障診斷,可實現(xiàn)負載短路到電源、負載短路到地、負載開路、負載短路等故障診斷,并實現(xiàn)高精度的負載阻抗和相位測量。此外,TAS6424E-Q1芯片中集成了上電啟動序列優(yōu)化及第一個PWM為低等抑制pop 音的解決方案,實現(xiàn)了良好的用戶聽音感受。除低pop noise外,該芯片的Burr-Brown音頻架構和增加的內(nèi)部音頻環(huán)路帶寬也可提供出色的音質(zhì),帶來良好的用戶體驗。
作者:Imelda Zhang
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
推薦閱讀: