你的位置:首頁 > EMC安規(guī) > 正文
Why?How?一文為你深度分析時(shí)鐘抖動(dòng)!
發(fā)布時(shí)間:2020-01-03 來源:ADI 責(zé)任編輯:wenwei
【導(dǎo)讀】時(shí)鐘接口閾值區(qū)間附近的抖動(dòng)會(huì)破壞ADC的時(shí)序。例如,抖動(dòng)會(huì)導(dǎo)致ADC在錯(cuò)誤的時(shí)間采樣,造成對(duì)模擬輸入的誤采樣,并且降低器件的信噪比(SNR)。降低抖動(dòng)有很多不同的方法,但是,在get降低抖動(dòng)的方法前我們必須找到抖動(dòng)的根本原因!
時(shí)鐘抖動(dòng),why?
時(shí)鐘抖動(dòng)的根本原因就是時(shí)鐘和ADC之間的電路噪聲。隨機(jī)抖動(dòng)由隨機(jī)噪聲引起,主要隨機(jī)噪聲源包括
● 熱噪聲(約翰遜或奈奎斯特噪聲),由載流子的布朗運(yùn)動(dòng)引起。
● 散粒噪聲,與流經(jīng)勢壘的直流電流有關(guān),該勢壘不連續(xù)平滑,由載流子的單獨(dú)流動(dòng)引起的電流脈沖所造成。
● 閃爍噪聲,出現(xiàn)在直流電流流動(dòng)時(shí)。該噪聲由攜帶載流子的半導(dǎo)體中的陷阱引起,這些載流子在釋放前通常會(huì)形成持續(xù)時(shí)間較短的直流電流。
● 爆裂噪聲,也稱爆米花噪聲,由硅表面的污染或晶格錯(cuò)位造成,會(huì)隨機(jī)采集或釋放載流子。
ps.以上噪聲我們?cè)鴮⒃敿?xì)講解過,有興趣的筒子點(diǎn)擊藍(lán)色字體查看~
查看時(shí)鐘信號(hào)噪聲,how?
確定性抖動(dòng)由干擾引起,會(huì)通過某些方式使閾值發(fā)生偏移,通常受器件本身特性限制。查看時(shí)鐘信號(hào)噪聲通常有三種途徑:時(shí)域、頻域、相位域。
咳咳,敲黑板劃重點(diǎn),以上三種途徑的具體方法如下↓↓↓
時(shí)域圖
圖1. 抖動(dòng)的時(shí)域圖
時(shí)鐘抖動(dòng)是編碼時(shí)鐘的樣本(不同周期)間的變化,包括外部和內(nèi)部抖動(dòng)。抖動(dòng)引起的滿量程信噪比由以下公式得出
舉個(gè)栗子,頻率為1 Ghz,抖動(dòng)為100 FS均方根值時(shí),信噪比為64 dB。在時(shí)域中查看時(shí),x軸方向的編碼邊沿變化會(huì)導(dǎo)致y軸誤差,幅度取決于邊沿的上升時(shí)間??讖蕉秳?dòng)會(huì)在ADC輸出產(chǎn)生誤差,如圖2所示。抖動(dòng)可能產(chǎn)生于內(nèi)部的ADC、外部的采樣時(shí)鐘或接口電路。
圖2. 孔徑抖動(dòng)和采樣時(shí)鐘抖動(dòng)的影響
圖3顯示抖動(dòng)對(duì)信噪比的影響。圖中顯示了5條線,分別代表不同的抖動(dòng)值。x軸是滿量程模擬輸入頻率,y軸是由抖動(dòng)引起的信噪比,有別于ADC總信噪比。
圖3. 時(shí)鐘抖動(dòng)隨模擬信號(hào)增大而提升信噪比
由抖動(dòng)引起的信噪比和有效位數(shù)(ENOB)的關(guān)系由以下公式定義:
SNR = 6.02 N + 1.76 dB
其中N =有效位數(shù)。滿量程100 MHz輸入時(shí),14位有效位數(shù)要求均方根抖動(dòng)不超過0.125 ps或125 fs。該公式假定ADC具有無限分辨率,其中的唯一誤差是由時(shí)鐘抖動(dòng)產(chǎn)生的噪聲。
圖4. 由抖動(dòng)產(chǎn)生的理論信噪比和有效位數(shù)與滿量程正弦波模擬輸入頻率的關(guān)系
頻域圖
近載波噪聲出現(xiàn)在采樣時(shí)鐘中心頻率和等于信號(hào)帶寬一半的單邊帶(SSB)失調(diào)之間。寬帶噪聲的范圍從單邊帶失調(diào)到½時(shí)鐘接收器帶寬。
圖5. 頻域圖
時(shí)間的乘法運(yùn)算是在頻域中進(jìn)行卷積。因此,時(shí)鐘上在頻域上的任何“裙邊”都會(huì)施加于數(shù)字信號(hào)。這會(huì)增加信號(hào)的EVM,降低整體性能。卷積到采樣信號(hào)上的噪聲量取決于模擬頻率與采樣頻率的關(guān)系。
圖6.卷積到采樣信號(hào)上的噪聲取決于模擬頻率和采樣頻率的關(guān)系
相位域圖
相位噪聲由每個(gè)時(shí)鐘周期之間的時(shí)間變化引起。最終結(jié)果是時(shí)鐘信號(hào)在基波頻率周圍變化,這一頻率范圍變化會(huì)降低ADC的信噪比。
圖7.抖動(dòng)的相位域圖
圖8所示的例子中,−66 dBc的雜散增加到78 MHz時(shí)鐘上,用來將ADC采樣控制在30.62 MHz模擬信號(hào)。
圖8. 使用噪聲時(shí)鐘采樣時(shí)的30.62 MHz信號(hào)
雜散為−74.1 dBc,按以下公式計(jì)算:
時(shí)鐘設(shè)計(jì)人員通常會(huì)提供一個(gè)相位噪聲,但不提供抖動(dòng)規(guī)格。相位噪聲規(guī)格可以轉(zhuǎn)換為抖動(dòng),首先確定時(shí)鐘噪聲,然后通過小角度計(jì)算將噪聲與主時(shí)鐘噪聲成分進(jìn)行比較。相位噪聲功率通過計(jì)算圖9中的灰色區(qū)域積分得出。
圖9. 對(duì)編碼帶寬的近載波到時(shí)鐘輸出噪聲進(jìn)行積分計(jì)算
高度為−160 dBc,寬度為10 KHz至245.76 MHz。因此,
10×log(245.7e6 − 10e3)
= 83.9 dB,−160 + 83.9 dB
= 76.1 dBc
得出積分噪聲。
載波的失調(diào)不同,噪聲的斜率也不同。例如,A1區(qū)域通常為1/f噪聲,而A4區(qū)域則視為寬帶噪聲。
圖10.在頻率范圍內(nèi)的噪聲變化情況
A =面積=積分相位噪聲功率(dBc)抖動(dòng)可以通過對(duì)編碼帶寬的近載波到時(shí)鐘輸出的噪聲進(jìn)行積分計(jì)算確定。頻率范圍應(yīng)分為較小的頻帶,然后相加得到總的結(jié)果:A = 10 log10 (A1 + A2 + A3 + A4)
本文轉(zhuǎn)載自ADI.
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對(duì)陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對(duì)陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對(duì)微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級(jí)本
超級(jí)電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊