你的位置:首頁 > 測試測量 > 正文

耳塞式光學(xué)心率測量

發(fā)布時(shí)間:2020-02-18 來源:Christoph K?mmerer 責(zé)任編輯:wenwei

【導(dǎo)讀】傳感器技術(shù)的進(jìn)步改變了人們診斷其生命體征和健康的方式與地點(diǎn)。便攜式非侵入測量技術(shù)可以在我們的日常生活中進(jìn)行快速簡單的測量。不過,盡管這種診斷技術(shù)在健身行業(yè)中已經(jīng)非常流行,但其精度有限,這個(gè)問題直到最近才被解決。
 
健身追蹤器可以測量心率和其他生命體征以幫助用戶設(shè)定日常鍛煉活動(dòng)。健身追蹤器通常內(nèi)置運(yùn)動(dòng)傳感器,可以檢測運(yùn)動(dòng)模式以幫助區(qū)分步行、跑步與游泳,因此它也可以用作計(jì)步器。為在日常生活中提供舒適和便利,測量通常在手腕上進(jìn)行,因?yàn)閭鞲衅骺梢苑胖迷谑直?、珠寶和腕帶等配飾中。但是,此位置?duì)測量質(zhì)量而言并非最佳。心率檢測會(huì)受到運(yùn)動(dòng)偽像的限制而難以進(jìn)行,因?yàn)榧∪赓|(zhì)量相對(duì)較大,會(huì)限制與動(dòng)脈的接觸。
 
相比之下,耳朵更適合進(jìn)行光學(xué)心率測量。耳垂已被醫(yī)學(xué)專家用于測量血氧水平。但到目前為止,這尚未在消費(fèi)者層面上得到充分利用,因?yàn)榛诙涞臏y量設(shè)備受空間限制,并且功耗非常高,需要大電池。但隨著高集成度、更低功耗芯片的推出,ADI公司已開發(fā)出解決這些問題的解決方案。現(xiàn)在可以將有效運(yùn)作的生命體征測量器件集成到典型的入耳式耳機(jī)中。響應(yīng)度的改進(jìn)開辟了全新的應(yīng)用領(lǐng)域和可能性。本文介紹并評(píng)估了該系統(tǒng)。
 
基礎(chǔ)測量方法是光學(xué)性的。測量使用來自最多三個(gè)LED的短脈沖信號(hào)。LED電流最高可達(dá)370 mA,最小脈沖寬度為1μs。LED的最佳波長根據(jù)測量位置和測量方法來選擇。手腕上只能測量表面動(dòng)脈,故而選擇綠光,耳朵則不同,可以使用紅外光,從而獲得更大的穿透深度和更高的SNR。光電二極管(其探測面積與其響應(yīng)度直接相關(guān))用于測量反射光。因此,它會(huì)同時(shí)測量信號(hào)和背景噪聲。下游模擬前端提供更高的SNR。它用作信號(hào)濾波器,將檢測到的電流轉(zhuǎn)換為電壓,進(jìn)而轉(zhuǎn)換為數(shù)字形式。除反射測量外,算法還包括用于通過加速度計(jì)濾除運(yùn)動(dòng)偽像的校正。
 
組成測量系統(tǒng)的器件說明如下。ADI公司的ADPD144RI芯片用作模擬前端,它還集成了光電二極管和LED。測量由三軸加速度計(jì)提供支持,該三軸加速度計(jì)不僅用于識(shí)別步態(tài)和運(yùn)動(dòng),還用于去除偽像。本例中使用ADXL362。整個(gè)過程由ADuCM3029微控制器控制,該微控制器用作各種傳感器的接口并包含算法。
 
http://m.gpag.cn/art/artinfo/id/80037662
圖1.集成光學(xué)傳感器和加速度計(jì)的測試系統(tǒng),刻度尺用于比較。
 
圖1顯示了該測試系統(tǒng),常規(guī)耳塞中同時(shí)容納了光學(xué)傳感器和加速度計(jì)。已采取措施將ADC采樣率限制在100 Hz并最小化LED強(qiáng)度,以盡可能降低功耗。
 
為了對(duì)系統(tǒng)特性進(jìn)行表征,針對(duì)不同的運(yùn)動(dòng)模式考慮了五種不同的場景。評(píng)估僅使用光學(xué)信號(hào),這樣就能知道脈沖測量不準(zhǔn)確性出現(xiàn)在哪些場景中,以及何時(shí)需要加速度計(jì)數(shù)據(jù)來提高脈沖測量的精度。場景涵蓋以下運(yùn)動(dòng)順序:
 
● 站著不動(dòng)
● 站著不動(dòng)并咀嚼
● 在辦公桌前工作
● 步行
●  跑步和跳躍
 
測試場景1
 
站著不動(dòng)
 
圖2為幅度與采樣速率的關(guān)系圖,顯示了原始數(shù)據(jù)的頻譜。隨著時(shí)間推移,脈搏可通過峰值來識(shí)別。在沒有運(yùn)動(dòng)的情況下,信號(hào)非常清晰,心率可通過峰值位置和已知的采樣速率來確定。
 
http://m.gpag.cn/art/artinfo/id/80037662
圖2.測量幅度過采樣率以提供有關(guān)心率的信息
 
光學(xué)傳感器用兩種LED顏色——紅外和紅光——記錄心率,每種顏色有四個(gè)通道。這樣就可以通過兩種不同顏色的通道來區(qū)分測量,并且可以選擇更穩(wěn)健的版本。各種通道的信號(hào)如圖3A所示。利用六個(gè)通道可以識(shí)別出非常明確的信號(hào),同時(shí)兩個(gè)通道飽和。為了獲得更強(qiáng)和更穩(wěn)健的信號(hào),算法會(huì)添加相應(yīng)的不飽和通道并計(jì)算心率。圖3B顯示了紅光通道(頂部)和紅外通道(底部)的心率,同時(shí)借助色標(biāo)顯示了測量的置信度。圖中還給出了心率的倍數(shù),由此可以通過采樣速率和置信度指示來區(qū)分原始信號(hào)(虛線)。
 
總之,在沒有運(yùn)動(dòng)的情況下,信號(hào)很強(qiáng)且沒有阻礙噪聲,因此算法能以高可信度確定心率。來自紅外通道的信號(hào)強(qiáng)于來自紅光通道的信號(hào)。
 
測試場景2
 
站著不動(dòng)并咀嚼
 
場景2引入了額外的咀嚼動(dòng)作。記錄的頻譜如圖4所示。與測試場景1不同,這里可以清楚地看到運(yùn)動(dòng)偽像,其在信號(hào)中表現(xiàn)為跳躍。它們在通道總和中也變得清晰,不再表現(xiàn)出如此明顯不同的速率。然而,算法還是能夠在沒有運(yùn)動(dòng)傳感器額外幫助的情況下以高置信度正確地確定心率。有意思的是,紅外信號(hào)強(qiáng)度再次大于紅光通道的信號(hào)強(qiáng)度。
 
http://m.gpag.cn/art/artinfo/id/80037662
http://m.gpag.cn/art/artinfo/id/80037662
圖3.紅色區(qū)域(頂部)顯示站著不動(dòng)情況的四通道測量,而紅外區(qū)域(底部)顯示原始數(shù)據(jù)和加總數(shù)據(jù)。心率(黑線)可以由算法通過加總數(shù)據(jù)確定,色標(biāo)指示置信度。
 
http://m.gpag.cn/art/artinfo/id/80037662
http://m.gpag.cn/art/artinfo/id/80037662
圖4.紅色區(qū)域(頂部)顯示站著不動(dòng)并咀嚼情況的四通道測量,而紅外區(qū)域(底部)顯示原始數(shù)據(jù)和加總數(shù)據(jù)。心率(黑線)可以由算法通過加總數(shù)據(jù)確定,色標(biāo)指示置信度。心率可以在沒有加速度計(jì)的情況下予以確定。
 
http://m.gpag.cn/art/artinfo/id/80037662
http://m.gpag.cn/art/artinfo/id/80037662
圖5.紅色區(qū)域(頂部)顯示在辦公桌前工作情況的四通道測量,而紅外區(qū)域(底部)顯示原始數(shù)據(jù)和加總數(shù)據(jù)。心率(黑線)可以由算法通過加總數(shù)據(jù)確定,色標(biāo)指示置信度。心率可以在沒有加速度計(jì)的情況下予以確定。
 
http://m.gpag.cn/art/artinfo/id/80037662
http://m.gpag.cn/art/artinfo/id/80037662
圖6.紅色區(qū)域(頂部)顯示步行情況的四通道測量,而紅外區(qū)域(底部)顯示原始數(shù)據(jù)和加總數(shù)據(jù)。心率(黑線)可以由算法通過加總數(shù)據(jù)確定,色標(biāo)指示置信度。對(duì)于紅外情況,心率可以在沒有加速度計(jì)的情況下予以確定。
 
http://m.gpag.cn/art/artinfo/id/80037662
http://m.gpag.cn/art/artinfo/id/80037662
圖7.紅色區(qū)域(頂部)顯示跑跳情況的四通道測量,而紅外區(qū)域(底部)顯示原始數(shù)據(jù)和加總數(shù)據(jù)。心率(黑線)可以由算法通過加總數(shù)據(jù)確定,色標(biāo)指示置信度。沒有加速度計(jì)很難確定心率。
 
http://m.gpag.cn/art/artinfo/id/80037662
圖8.無加速度計(jì)數(shù)據(jù)(左)和有加速度計(jì)數(shù)據(jù)(右)的加性頻譜比較。利用加速度計(jì)可以重建用戶的心率。
 
測試場景3
 
在辦公桌前工作
 
場景3中測試了另一種日常情況。測試人員坐在桌子前進(jìn)行一些正常工作以及相關(guān)的動(dòng)作。與場景2類似,可以檢測到運(yùn)動(dòng)偽像,由此算法可以識(shí)別兩個(gè)通道中的心率。從圖5中可以看出,紅外信號(hào)在這里同樣占主導(dǎo)地位。
 
測試場景4
 
步行
 
先前的場景關(guān)注的是靜止測量情況,但在本場景中,測試人員以低速(大約每分鐘50步)沿一個(gè)方向均勻移動(dòng)。如圖6所示,PPG信號(hào)中混合了心率與步伐,各種聲道的總和顯示的信號(hào)非常模糊。雖然在紅光信號(hào)場中無法計(jì)算明確的心率,但算法在紅外信號(hào)中找到一個(gè)擬合的心率。然而,由于波動(dòng)很大和矩陣的置信度很低,來自加速度計(jì)的附加運(yùn)動(dòng)數(shù)據(jù)將非常有用,特別是因?yàn)榈侥壳盀橹梗瑴y量僅在較低步行速度下進(jìn)行。
 
測試場景5
 
跑步和跳躍
 
場景5不是測量均勻運(yùn)動(dòng),而是短跑和跳躍以一定的間隔交替進(jìn)行?,F(xiàn)在可以非常清楚地識(shí)別運(yùn)動(dòng)偽像,算法很難隔離出正確的心率,如圖7所示。需要運(yùn)動(dòng)傳感器提供支持似乎是不可避免的。
 
為了更好地評(píng)估對(duì)運(yùn)動(dòng)傳感器的需求,場景5測試了使用和不使用加速度計(jì)兩種情況下的測量技術(shù)。圖8顯示了無校正加速度計(jì)數(shù)據(jù)(左)和有校正加速度計(jì)數(shù)據(jù)(右)的加性頻譜的比較。在識(shí)別心率時(shí)可以看到信號(hào)明顯改善,如果沒有加速度計(jì)的支持,這是不可能的。
 
從測試案例中可以得出結(jié)論,在大多數(shù)情況下,心率可以利用耳塞中集成的傳感器非常精確地加以確定。在局部或慢速平移運(yùn)動(dòng)的情況下,心率甚至可以在不使用加速度計(jì)數(shù)據(jù)的情況下加以確定。然而,在突然和快速運(yùn)動(dòng)的極限情況下,與運(yùn)動(dòng)校正數(shù)據(jù)進(jìn)行比較也能釋讀數(shù)據(jù)。在所有情況下,紅外信號(hào)均強(qiáng)于紅光信號(hào)。
 
與手腕測量相比,耳朵中的信號(hào)更強(qiáng),因此測量精度可以達(dá)到更高水平。此外,使用紅光或紅外光可以測量血氧水平。
 
結(jié)論
 
總之,功能測試系統(tǒng)也已證明,耳朵測量非常有前途。測量裝置也可以通過更好的機(jī)械集成來改進(jìn),并加以擴(kuò)展來實(shí)現(xiàn)額外的測量。這樣,加速度計(jì)還可用于跌倒檢測和步態(tài)識(shí)別,從而為客戶創(chuàng)造更多價(jià)值。
 
 
推薦閱讀:
 
為什么你可選的電容都是:1、2.2、4.7這樣的數(shù)值?
基于單硅芯片的電池化成控制系統(tǒng)綜合解決方案
細(xì)數(shù)傳感器在本次疫情中的3類應(yīng)用
電機(jī)EMC問題,你想知道的都在這里
新型的EMI濾波器BDL的優(yōu)勢與特征
要采購傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉