你的位置:首頁 > 電源管理 > 正文

使用電源模塊簡化低EMI設(shè)計(jì)

發(fā)布時間:2018-10-18 責(zé)任編輯:lina

【導(dǎo)讀】越來越多的應(yīng)用必須通過EMI標(biāo)準(zhǔn),制造商才獲得商業(yè)轉(zhuǎn)售批準(zhǔn)。開關(guān)電源意味著器件內(nèi)部有電子開關(guān),EMI可通過它產(chǎn)生輻射。
 
在設(shè)計(jì)開關(guān)電源時,您可能聽說過電磁干擾(EMI)
 
越來越多的應(yīng)用必須通過EMI標(biāo)準(zhǔn),制造商才獲得商業(yè)轉(zhuǎn)售批準(zhǔn)。開關(guān)電源意味著器件內(nèi)部有電子開關(guān),EMI可通過它產(chǎn)生輻射。
 
本文將介紹開關(guān)電源中EMI的來源以及降低EMI的方法或技術(shù)。本文還將向您展示電源模塊(控制器、高側(cè)和低側(cè)FET及電感器封裝為一體)如何幫助降低EMI。
 
開關(guān)電源中EMI的來源
 
首先,必須尊重物理定律。根據(jù)麥克斯韋方程組,交流電可產(chǎn)生電磁場。每個電導(dǎo)體中均會出現(xiàn)這種現(xiàn)象,其自身帶有一些可以形成振蕩電路的電容和電感。該振蕩電路以特定頻率(f=1/(2*π*sqrt(LC)))將電磁能輻射到空間中。該電路充當(dāng)電磁能的發(fā)射器,但也可以接收電磁能并充當(dāng)接收器。天線設(shè)計(jì)是為了最大化傳輸或接收能量。
 
但并非每個應(yīng)用都應(yīng)該像天線一樣,而且這種設(shè)計(jì)可能會產(chǎn)生負(fù)面影響。例如,開關(guān)降壓電源設(shè)計(jì)用于將較高的電壓轉(zhuǎn)換為較低的電壓,但它們同時也充當(dāng)了(有害的)電磁波發(fā)射器,可能干擾其他應(yīng)用,例如干擾AM頻段。這種效應(yīng)稱為EMI。
 
為了確保功能正常運(yùn)行,最大限度地減少EMI源非常重要。國際無線電干擾特別委員會(CISPR)定義了各種標(biāo)準(zhǔn),如作為汽車電氣應(yīng)用基準(zhǔn)的CISPR 25,以及針對信息技術(shù)設(shè)備的CISPR 22。
 
如何降低電源設(shè)計(jì)的EMI輻射呢?一種方法是用金屬完全屏蔽開關(guān)電源。但在大多數(shù)應(yīng)用中,由于成本和空間的原因,這種方法無法實(shí)現(xiàn)。一種更好的方法是減少和優(yōu)化EMI源。許多文獻(xiàn)已經(jīng)詳細(xì)討論了這一專題;本文推薦了兩種方式。
 
讓我們回顧一下開關(guān)電源中EMI的主要來源,以及為什么電源模塊可以幫助您輕松降低EMI。
 
減小布局中的電流環(huán)路
 
顧名思義,開關(guān)電源是用來進(jìn)行轉(zhuǎn)換的。它們的作用是以幾百千赫到幾兆赫的頻率打開和關(guān)閉輸入電壓。這就導(dǎo)致了快速電流轉(zhuǎn)換(dI/dt)和快速電壓轉(zhuǎn)換(dV/dt)。根據(jù)麥克斯韋方程組,交流電流和電壓產(chǎn)生交變電磁場。這些電磁場從其原點(diǎn)徑向擴(kuò)散,它們的強(qiáng)度隨距離而降低。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖1.來自開關(guān)電源的EMI會對負(fù)載和主電源產(chǎn)生影響。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖2.在輸入端、開關(guān)和輸入電容器之間形成臨界電流環(huán)路。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖3.減小環(huán)路區(qū)域有助于降低EMI
 
磁場和電場會干擾應(yīng)用的導(dǎo)電部件(例如,印刷電路板[PCB]上的銅跡線,就像天線一樣)并在線路上產(chǎn)生額外的噪聲,這樣又會導(dǎo)致發(fā)生EMI(見圖1)。實(shí)際上幾瓦功率的轉(zhuǎn)換就會擴(kuò)大EMI的輻射范圍。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖4.引腳排列有助于減小環(huán)路面積。左圖:優(yōu)化的引腳排列;右圖:非優(yōu)化布局,幾乎無法形成良好的布局。
 
輻射的電磁能與其流過的電流量(I)和環(huán)路面積(A)成正比。減小交流電流和電壓環(huán)路的面積有助于降低EMI(見圖2和圖3)。
 
著眼于引腳排列(見圖4)可以幫助您通過減小高dI/dt環(huán)路面積來更好地設(shè)計(jì)良好布局。例如,開關(guān)節(jié)點(diǎn)能夠引發(fā)高電流變化(dI)和高電壓轉(zhuǎn)換(dV)。良好的引腳排列可以分離噪聲敏感引腳和噪聲引腳。開關(guān)節(jié)點(diǎn)和啟動引腳應(yīng)盡可能遠(yuǎn)離噪聲敏感型反饋引腳。此外,輸入引腳和接地引腳應(yīng)相鄰。這樣便簡化了PCB上的布線和輸入電容器的放置。
 
圖5顯示了LMR23630 SIMPLE SWITCHER®轉(zhuǎn)換器的改進(jìn)評估模塊(EVM)。兩個輸入電容器距離輸入引腳約2.5厘米。之所以如此排列,是為了模擬不良布局,因?yàn)殡娏鳝h(huán)路區(qū)域(圖5中的紅色矩形)比數(shù)據(jù)表所要求和建議的要大。圖5中的橢圓形紅色形狀表示轉(zhuǎn)換器和電感器之間的開關(guān)節(jié)點(diǎn)。IC和電感器之間的環(huán)路面積越小越好。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖5.輸入引腳和輸入電容器之間環(huán)路面積(紅色矩形)較大的錯誤布局示例。在IC和電感器之間形成第二個環(huán)路區(qū)域(橢圓形紅色形狀)。
 
圖6中的曲線圖顯示了LMR23630轉(zhuǎn)換器的EMI輻射,其中只有VIN、GND和輸入電容器之間形成的環(huán)路面積不同。良好的布局中電容器盡可能靠近輸入引腳和接地引腳(環(huán)路面積盡可能地?。?。而不良的布局中輸入電容器距離輸入引腳2.5厘米,從而形成一個較大的環(huán)路面積。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖6.LMR23630轉(zhuǎn)換器輸入電容布局對EMI輻射的影響。
 
圖6中曲線圖的紅線表示不良布局的EMI輻射。藍(lán)線表示采用相同EVM的良好布局的EMI輻射。修改一個環(huán)路面積會產(chǎn)生巨大的影響。LMR23630轉(zhuǎn)換器的EMI輻射水平可降低20 dBμV/m以上。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖7.不同類型電源模塊的內(nèi)部組成。在這兩種情況下,電感器均位于IC晶片的頂部。
 
因此,在采用降壓轉(zhuǎn)換器或降壓電源模塊進(jìn)行設(shè)計(jì)時,如何放置輸入電容器應(yīng)該是首要考慮因素之一。電源模塊還具有以下優(yōu)點(diǎn):電感器和IC之間的關(guān)鍵環(huán)路面積已經(jīng)過優(yōu)化。電感器在封裝內(nèi)部與集成電路連接(見圖7)。這種放置方式會在封裝內(nèi)部形成一個較小的環(huán)路區(qū)域。因此,不必將噪聲開關(guān)節(jié)點(diǎn)布線在印刷電路板上。
 
電源模塊中屏蔽了其中的大多數(shù)電感器,以防止來自線圈的電磁輻射。在非??拷姼衅鞯牡胤綍l(fā)生高電流電壓轉(zhuǎn)換,并且開關(guān)節(jié)點(diǎn)的一部分電磁場受到屏蔽,電感器位于引線框架的頂部(見圖7)。
 
快速的電壓和電流瞬變
 
快速瞬變會導(dǎo)致開關(guān)節(jié)點(diǎn)發(fā)生振鈴,從而產(chǎn)生EMI。在某些情況下,轉(zhuǎn)換器可連接至啟動引腳。將一個電阻器與啟動電容器串聯(lián)放置會增加上升時間(dt),在降低EMI的同時損失了效率。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖8.將啟動電阻器添加到LMR23630轉(zhuǎn)換器開關(guān)節(jié)點(diǎn)的影響。EMI輻射較低,但由于開關(guān)損耗較高,因此效率有所降低。
 
圖8顯示了LMR23630 EVM的EMI輻射掃描。對布局進(jìn)行更改后,將輸入電容器放在距引腳約2.5厘米遠(yuǎn)的位置,以模擬不良布局,并展示啟動電容器的放置將如何影響EMI特性。在設(shè)計(jì)中多放一個啟動電容器可能比完全改變布局更容易。建議您在設(shè)計(jì)時始終將啟動電容器考慮進(jìn)去,以備不時之需。如果沒有,您可以使用0Ω電阻器來減少PCB上的空間。
 
將啟動電阻器與啟動電容器串聯(lián)可以降低EMI頻譜。某些頻率范圍中的發(fā)射會降低達(dá)6dB。圖8還顯示了效率平衡情況。使用30.1Ω的電阻器縮短上升時間dt,從而將效率降低1%以上。
 
看一下功率損耗就更能說明這一點(diǎn)。滿載(3A)的功率損耗從1.9W增加到2.1W。功率損耗超過10%時,可能會導(dǎo)致散熱問題。
 
在開關(guān)節(jié)點(diǎn)引腳和接地引腳之間放置一個小型肖特基二極管可以降低反向恢復(fù)電流,從而降低同步轉(zhuǎn)換器中的開關(guān)節(jié)點(diǎn)電流振鈴dI,但這樣會提高物料清單(BOM)成本?;蛘撸梢蕴砑右粋€緩沖網(wǎng)絡(luò),其中包含一個位于開關(guān)節(jié)點(diǎn)與接地之間的額外的大封裝電容和電阻。緩沖器可消耗開關(guān)節(jié)點(diǎn)振鈴的能量,但需要知道附加組件的振鈴頻率和正確計(jì)算。這種方法同樣會降低開關(guān)電源的效率。
 
電流路徑中的寄生電感和電容
 
對于同步降壓轉(zhuǎn)換器,每個IC架構(gòu)會產(chǎn)生不同強(qiáng)度的噪聲,表現(xiàn)為EMI輻射。但很難從數(shù)據(jù)表中找到這一項(xiàng)。大多數(shù)數(shù)據(jù)表都沒有提供EMI圖,因?yàn)镻CB布局、BOM組件和其他因素會對EMI特性產(chǎn)生影響。幸運(yùn)的話,EVM用戶指南會提供此特定設(shè)計(jì)的EMI特性圖。但如果您的設(shè)計(jì)與EVM的布局和BOM不匹配,您所設(shè)計(jì)的應(yīng)用的EMI特性可能會有很大差異。電源模塊簡化了布局,實(shí)現(xiàn)了快速簡便的設(shè)計(jì),因?yàn)槟恍枰紤]一些經(jīng)驗(yàn)法則。例如,盡量減少接地平面中的跡線或切口數(shù)量;必要時,將其設(shè)計(jì)為與電流方向保持平行(圖9)。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖9.PCB中的切口和跡線會影響電流,因此也會影響輻射EMI。
 
保護(hù)噪聲敏感節(jié)點(diǎn)免受噪聲節(jié)點(diǎn)的影響
 
盡可能縮短噪聲敏感節(jié)點(diǎn),并遠(yuǎn)離噪聲節(jié)點(diǎn)。例如,從電阻分壓網(wǎng)絡(luò)到反饋(FB)引腳的長跡線可以充當(dāng)天線并捕獲電磁輻射干擾的噪聲(圖10)。這種噪聲會被引入FB引腳,致使輸出端產(chǎn)生額外的噪聲,甚至使器件不穩(wěn)定。在設(shè)計(jì)開關(guān)降壓調(diào)節(jié)器的布局時,將這一切都考慮在內(nèi)是一個挑戰(zhàn)。
 
使用電源模塊簡化低EMI設(shè)計(jì)
表1.降壓轉(zhuǎn)換器中噪聲敏感節(jié)點(diǎn)和噪聲節(jié)點(diǎn)的示例。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖10.始終將FB引腳上的電阻分壓器盡可能靠近FB引腳放置。
 
模塊的優(yōu)勢在于將噪聲敏感節(jié)點(diǎn)和噪聲節(jié)點(diǎn)保持在最低限度,從而最大限度地減小錯誤布局的幾率。唯一要注意的是保持FB引腳的跡線盡可能短。
 
結(jié)論
 
在開關(guān)降壓轉(zhuǎn)換器中有許多用來調(diào)節(jié)EMI的旋鈕,但用來實(shí)現(xiàn)最佳方案可能還不夠方便。找到最佳配置會花費(fèi)大量寶貴的設(shè)計(jì)時間。電源模塊早已包括FET和電感器,這就使得創(chuàng)建和完成具有良好EMI特性的電源設(shè)計(jì)變得簡單而又快捷。使用降壓模塊進(jìn)行設(shè)計(jì)時最關(guān)鍵的一點(diǎn)是一些外部元件的放置方式,這有助于顯著提高EMI特性。
 
轉(zhuǎn)換器和電源模塊的EMI比較
 
前文說明了開關(guān)電源中EMI的來源以及如何降低EMI。現(xiàn)在,本文將通過比較轉(zhuǎn)換器和使用相同集成電路(IC)的電源模塊之間的測量結(jié)果,來演示模塊如何幫助減輕EMI輻射。兩者均來自TI的SIMPLE SWITCHER產(chǎn)品線,轉(zhuǎn)換器為LMR23630,電源模塊為LMZM33603,采用LMR23630 IC。通過對兩個器件的EVM做部分更改,以獲得相同的BOM數(shù),因此結(jié)果僅取決于所選部件(轉(zhuǎn)換器或電源模塊)和布局。兩種EVM均具有良好的優(yōu)化布局。之后,將電容器放置在遠(yuǎn)離輸入引腳的位置,就生成了不良布局。
 
LMR23630轉(zhuǎn)換器的性能
 
 SHAPE  * MERGEFORMAT
 
轉(zhuǎn)換器 - LMR 23630
 
良好布局
 
電容器靠近
 
電容器遠(yuǎn)離
 
無電容器
 
頻率[MHz]
 
良好布局
 
小電容器靠近
 
小電容器遠(yuǎn)離
 
無小電容器
 
電平[dBµV/m]
 
CISPR 22 A3M級
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖11.具有不同輸入電容布局的LMR23630轉(zhuǎn)換器的EMI輻射。
 
圖11顯示了不同設(shè)計(jì)布局的四種不同EMI頻譜。設(shè)計(jì)布局從優(yōu)至劣排列(類似于圖5,只是把各步驟分開)。第一次測量(良好布局/藍(lán)線)時,未對EVM的布局做出更改(良好布局中所有的輸入電容器都非常靠近輸入引腳)。第二次測量(小電容器靠近/紅線)時,兩個4.7μF電容器均放置在距輸入引腳2.5厘米處。0.22μF的小電容器非??拷斎胍_。在第三(小電容器遠(yuǎn)離/綠線)和第四(無小電容器/紫線)次測量時,小電容器分別距輸入引腳2.5厘米,然后完全移除。
 
您可以在圖11中看到輸入電容器的放置非常關(guān)鍵。將小輸入電容器遠(yuǎn)離輸入引腳放置或?qū)⑵渫耆瞥龝`背CISPR 22 A3M級標(biāo)準(zhǔn)。將小電容器靠近輸入引腳放置可以最大限度地減少高頻環(huán)路面積。小電容器可濾除高頻噪聲,而較大電容的電容器可濾除低頻噪聲。
 
電源模塊的封裝中通常包含一個小輸入電容器。讓我們看看布局不良時電源模塊的性能。
 
LMZM33603電源模塊的性能
 
圖12顯示了電源模塊的EVM布局,同樣從優(yōu)至劣排列。藍(lán)線表示未更改EVM的EMI輻射。紅線和綠線表示不良布局,其中一條線有兩個4.7μF輸入電容器,位于PCB底部下方(紅線)。綠線的電容器距輸入引腳約3.5厘米(圖13中以紅色橢圓形突出顯示)。圖13中的紅色粗線還顯示了更改后的EVM,以及VIN、輸入電容器和接地之間形成的關(guān)鍵環(huán)路區(qū)域。EMI特性變差,但并不違背CISPR 22 A3M級標(biāo)準(zhǔn)。
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖12.TI LMZM33603電源模塊的EMI輻射特性
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖13.TI LMZM33603電源模塊的不良布局示例。
 
電源模塊可以補(bǔ)救布局設(shè)計(jì)錯誤
 
圖14在單個圖表中對LMR23630轉(zhuǎn)換器(紅線)和LMZM33603電源模塊(藍(lán)線)做出了對比。兩者均有類似的不良布局,所有外部輸入電容器都遠(yuǎn)離輸入引腳。
 
顯然,LMZM33603電源模塊的EMI輻射特性要優(yōu)于LMR23630轉(zhuǎn)換器。盡管兩種布局均不完美,但電源模塊會通過CISPR測試,而轉(zhuǎn)換器無法通過測試。
 
 
使用電源模塊簡化低EMI設(shè)計(jì)
圖14.比較TI LMR23630轉(zhuǎn)換器和LMZM33603電源模塊的EMI特性。
 
 
 
推薦閱讀:
RS-485接口器件通訊無故障偏置電路的原理和設(shè)計(jì) 
隔離式DC-DC轉(zhuǎn)換器為消除隔離設(shè)計(jì)的隱藏成本解決方案 
解析串聯(lián)諧振是怎么諧振的及其原理 
Xilinx推首款新類別平臺—Versal:利用軟件可編程性與可擴(kuò)展的 AI 推斷技術(shù)支持快速創(chuàng)新 
打破認(rèn)知!ITOO EDGE 5革命性智能中控上市在即,智能引擎如何為住宅注入智能化動力 
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉