關(guān)于高效率DC-DC轉(zhuǎn)換器,一般設(shè)計(jì)直覺(jué)會(huì)聯(lián)想到半橋諧振轉(zhuǎn)換器,在業(yè)界方案也較為純熟。然而,針對(duì)寬范圍輸出的應(yīng)用,若以LLC(圖2右上)設(shè)計(jì)可支援廣范圍電壓增益的諧振槽,除了采用相對(duì)漏感于激磁電感的比例較大的設(shè)計(jì)方式,或是采用常見(jiàn)于LED照明的LCC架構(gòu) [2],可降低輸出輸出電壓范圍內(nèi)的頻率變化,但增加磁性元件成本與初級(jí)導(dǎo)通損耗仍使產(chǎn)品應(yīng)用受限?;貧w至效率優(yōu)化后的LLC架構(gòu),在輸出端增加一降壓轉(zhuǎn)換器可支援寬電壓輸出,并在輸出滿(mǎn)電壓條件下旁路降壓轉(zhuǎn)換器,在此條件下可取得高效率,但此舉也會(huì)增加電路空間與零件數(shù)量,使功率密度無(wú)法最佳化。故當(dāng)今PD應(yīng)用首選之架構(gòu)仍多以返馳式為主。
回歸到傳統(tǒng)型返馳式架構(gòu)(圖2左上)普遍應(yīng)用于寬電壓輸出,若要進(jìn)一步提升電路效率,必須有漏感能量回收機(jī)制,將漏感能量轉(zhuǎn)移至諧振電容或輸入端,而轉(zhuǎn)換器須藉由啟始的負(fù)向電流達(dá)成零電壓切換(ZVS,Zero voltage switching)以降低開(kāi)關(guān)切換損耗,因此電路拓樸將有2個(gè)開(kāi)關(guān)元件。主動(dòng)位箝位型返馳式轉(zhuǎn)換器(ACF,Active-Clamp Flyback) (圖3右上)相較于傳統(tǒng)返馳式轉(zhuǎn)換器增加上臂開(kāi)關(guān),其提供路徑將回收漏感能量之電容透過(guò)變壓器導(dǎo)引至變壓器次級(jí)側(cè),并且上臂與下臂開(kāi)關(guān)導(dǎo)通前之初始狀態(tài)為負(fù)電流,開(kāi)關(guān)皆可達(dá)成零電壓切換。
圖3右下方架構(gòu)屬于半橋的一種,其主開(kāi)關(guān)位置連接至輸入端母線電壓,諧振電容則與變壓器串聯(lián),初級(jí)側(cè)看起來(lái)近似于LLC架構(gòu),次級(jí)側(cè)與返馳式轉(zhuǎn)換器同為單邊繞組。此架構(gòu)在業(yè)界較為少見(jiàn),動(dòng)作原理如下(圖3):
上臂開(kāi)關(guān)導(dǎo)通,啟始電流為負(fù)向,此延續(xù)上周期達(dá)到零電壓導(dǎo)通的狀態(tài)。此時(shí)變壓器開(kāi)始儲(chǔ)能,猶如返馳式轉(zhuǎn)換器變壓器儲(chǔ)能的機(jī)制,變壓器端電壓為輸入電壓與諧振電容電壓的差值,此決定變壓器電流上升的斜率。實(shí)際上電路主要為激磁電感與諧振電容共振,但由于諧振頻率過(guò)低,故電流波形近似于線性上升之三角波。
上臂開(kāi)關(guān)截止,變壓器電流續(xù)流,使下臂開(kāi)關(guān)未導(dǎo)通前的初始電流為負(fù)向,下臂開(kāi)關(guān)達(dá)到零電壓切換。
下臂開(kāi)關(guān)導(dǎo)通,諧振電容向變壓器釋能同時(shí)與變壓器漏感共振,故次級(jí)電流為弦式波形。直到諧振周期結(jié)束,二次側(cè)電流截止,諧振電容則持續(xù)對(duì)激磁電感負(fù)向儲(chǔ)能。由此周期可得知,輸出電壓與諧振電容電壓為變壓器圈數(shù)比之關(guān)系,因此輸入與輸出電壓的關(guān)系式為:VIN/VO = N/Duty,其中N為變壓器初次級(jí)的圈數(shù)比。Duty為主開(kāi)關(guān)導(dǎo)通時(shí)間對(duì)開(kāi)關(guān)周期的占比。
下臂開(kāi)關(guān)截止,在上臂開(kāi)關(guān)導(dǎo)通前負(fù)向的激磁電流協(xié)助上臂開(kāi)關(guān)達(dá)到零電壓切換。此階段需求之負(fù)電流大小與選用開(kāi)關(guān)的雜散電容(Coss)有關(guān),與ACF雷同。選用Coss較小的MOSFET 或?qū)捘芟栋雽?dǎo)體,則ZVS的能量需求較小,能更進(jìn)一步降低回路上的導(dǎo)通損耗。
由于此架構(gòu)上臂做為主開(kāi)關(guān),在導(dǎo)通的同時(shí)對(duì)變壓器與諧振電容儲(chǔ)能,下臂開(kāi)關(guān)導(dǎo)通時(shí)能量傳送方式則類(lèi)似于LLC,故有文獻(xiàn)將其名為Hybrid Flyback(HFB)[3]。
圖2、電路架構(gòu)比較圖[3]
圖3、 HFB簡(jiǎn)易動(dòng)作原理
針對(duì)中大功率(>75W)之寬電壓應(yīng)用,下表一為架構(gòu)比較包含開(kāi)關(guān)元件應(yīng)力,基于常用之變壓器圈數(shù)比范圍,輸入端母線電壓390Vdc,輸出電壓范圍5V~20V。HFB適用設(shè)計(jì)為拉高變壓器圈數(shù)比以降低二次側(cè)開(kāi)關(guān)電壓應(yīng)力,而初級(jí)開(kāi)關(guān)應(yīng)力僅為母線電壓。此優(yōu)勢(shì)回饋在元件耐壓的選用上,對(duì)于高壓開(kāi)關(guān)常用額定600V仍有足夠設(shè)計(jì)裕度,無(wú)論初級(jí)或次級(jí)側(cè)可選擇更低導(dǎo)通電阻或低雜散電容的開(kāi)關(guān)器件。
表一、架構(gòu)應(yīng)用比較表
關(guān)于小型化電源內(nèi)部空間分布,變壓器等被動(dòng)元件占大部份容積,由于高頻化設(shè)計(jì)可縮小儲(chǔ)能元件體積,部份設(shè)計(jì)者采用平面變壓器有利于產(chǎn)品模組化與薄型化設(shè)計(jì),也可進(jìn)一步降低高頻操作時(shí)的集膚效應(yīng)與鄰近效應(yīng)帶來(lái)的損耗,在消費(fèi)型產(chǎn)品市場(chǎng)逐漸展露優(yōu)勢(shì)。其次為功率半導(dǎo)體封裝占用的空間,隨著半導(dǎo)體封裝技術(shù)提升,可采用貼片式功率晶體較易實(shí)現(xiàn)薄型化電源或PCB模組化設(shè)計(jì)。支援的應(yīng)用涵蓋自最前端的主動(dòng)式橋式整流器(Active Bridge) ,PFC電路至PWM級(jí)開(kāi)關(guān)與同步整流電路,目前業(yè)界皆有通盤(pán)的對(duì)策(圖4)。SMD封裝ThinPAK8x8或ThinPAK5x6高度僅1mm,對(duì)于產(chǎn)品厚度的縮減有莫大幫助,大幅提升功率密度的百分比。此外,降低元件厚度可有效阻隔熱點(diǎn),間接降低產(chǎn)品的外殼溫度,如圖5為半導(dǎo)體封裝對(duì)殼溫之影響。
圖4、薄型化SMD元件選用示意圖
圖5、TO252與ThinPAK封裝對(duì)于殼溫之比較示意圖
下圖為一數(shù)位控制器實(shí)現(xiàn)之100W混成返馳式電源平臺(tái),支援5V~20V 輸出,滿(mǎn)載操作頻率為190kHz。PFC控制晶片采用小型5 pin封裝之IRS2505,PD控制晶片采用CYPD3174,功率半導(dǎo)體皆采用英飛凌之1mm之薄型化SMD封裝設(shè)計(jì):PFC 級(jí)采用ThinPAK8x8/600V/180m?,PWM級(jí)采用ThinPAK5x6/ 600V/360m?,SR開(kāi)關(guān)采用ThinPAK5x6/80V/2.6m?,電源功率密度不含機(jī)構(gòu)外殼與線材可達(dá)42W/inch3。實(shí)測(cè)極端條件下之90Vac滿(mǎn)載效率最高可達(dá)92.5%。以下仍有方式可進(jìn)一步提升效率,可作為未來(lái)優(yōu)化性能之參考: (1) 低壓AC輸入條件下電路主要損耗為橋式整流二極體,若將其改為主動(dòng)式 (Active Bridge) 可望提升效率至93%以上。 (2) 寬能隙半導(dǎo)體應(yīng)用于半橋類(lèi)架構(gòu)可減少ZVS需求能量,間接降低初級(jí)導(dǎo)通損耗。
圖6、以混成返馳式轉(zhuǎn)換器實(shí)現(xiàn)100W寬范圍輸出電源
以上闡述混成返馳式轉(zhuǎn)換器應(yīng)用于寬電壓范圍之優(yōu)勢(shì),附帶SMD封裝選用之經(jīng)驗(yàn)分享。此架構(gòu)亦可推廣應(yīng)用于LED驅(qū)動(dòng)電路、支援充電功能之智能家電與其他電池充電之應(yīng)用。
參考文獻(xiàn)
[1] https://www.usb.org/document-library/usb-power-delivery
[2] https://www.edntaiwan.com/20190213ta31-achieve-wide-voltage-led-constant-current-drive/
[3] https://www.mdpi.com/2079-9292/7/12/363
(來(lái)源:英飛凌科技,作者:洪士恒,資深主任工程師)