零頻率IF
發(fā)布時(shí)間:2018-03-16 來源:John Dunn 責(zé)任編輯:wenwei
【導(dǎo)讀】超外差原理是,任何頻率的輸入信號(hào)都與“本地振蕩器”的頻率“混合”,在稱為IF的“中頻”產(chǎn)生新的信號(hào)。本設(shè)計(jì)實(shí)例將介紹一種混頻安排,其中本地振蕩器以輸入信號(hào)的頻率運(yùn)行,產(chǎn)生零赫的IF。
超外差接收機(jī)中使用的縮寫詞“IF”代表“中頻”,所以對于一個(gè)追求語言純粹的人,本文標(biāo)題中出現(xiàn)了“頻率頻率”的并列就顯得荒謬。但是我決定不在意。談?wù)撘豢钪蓄l器件或電路或系統(tǒng)或其它任何東西都太簡單了,所以我要懇請你的寬容。
超外差原理是,任何頻率的輸入信號(hào)都與“本地振蕩器”的頻率“混合”,在我們稱為IF的“中頻”產(chǎn)生新的信號(hào)。在典型的AM收音機(jī)中,IF是455kHz;而在典型的FM收音機(jī)中,IF是10.7MHz。在這兩種情況下,本地振蕩器都以輸入信號(hào)的頻率運(yùn)行,但由IF移頻。如果你在紐約市收聽WINS的AM電臺(tái),選臺(tái)到1010kHz,則本地振蕩器將以1465kHz的頻率工作。
但這里我們將看到一種混頻安排,其中本地振蕩器以輸入信號(hào)的頻率運(yùn)行,產(chǎn)生零赫的IF,正如標(biāo)題所說。
下圖是用于超外差接收的零頻率IF級,只要其頻率wm = 2×pi×fm足夠接近第二本地振蕩器頻率wc= 2×pi×fc,輸入#1就被傳遞到輸出。輸入頻率有多接近必須借助一對低通濾波器來設(shè)置。兩個(gè)低通濾波器的截止頻率越低,選擇范圍越窄。
圖1:零頻率IF和公式,首次考查。
理想的乘法器是我們的混頻器。其操作基于三角函數(shù)公式:cos a x cos b = ½ x (cos (a+b) + cos (a-b)) ,如圖1所示。
但是,可以用另一種方式應(yīng)用這種代數(shù)關(guān)系。我們可以用“a”代表“wc”,“b”代表“wm”,或者反過來,都沒關(guān)系。
圖2:零頻率IF和公式,第二次考查。
在這種情況下,我們使用等價(jià)三角函數(shù)公式:cos b x cos a = ½(cos (b+a) + cos (b-a))。
這種差別并沒產(chǎn)生什么不同,圖1和圖2的最終結(jié)果相同。采用 SPICE的零頻率IF仿真如圖3所示。
圖3:采用 5kHz低通濾波器零頻率IF仿真。
...或更窄的帶通,像圖4那樣。
圖4:采用約500Hz低通濾波器的零頻率IF仿真。
整個(gè)帶通是低通濾波器截止頻率的兩倍。使用1MHz的本地振蕩器頻率,針對圖中顯示的單個(gè)RC濾波器,計(jì)算出的帶通如圖5所示。
圖5:零頻率IF帶通。
要注意10:1的帶寬比與10:1的低通濾波器截止頻率比,它們?yōu)椋?/(2 pi x 3160 x 0.01E-6) = 5037 Hz ...和... 1/(2 pi x 3160 x 0.1E-6) = 503.7Hz。
這項(xiàng)技術(shù)被應(yīng)用于美國海軍CVA VAST測試系統(tǒng)的Building Block 38(BB38)中,BB38被稱為低頻波分析儀。但零頻IF并非 源于此,而是借鑒現(xiàn)已停產(chǎn)的惠普HP3590A分析儀。
然而,戲法只能玩一次。四混頻器可能會(huì)受到DC偏移的干擾。為避免這個(gè)問題,用極低頻高通角對低通濾波器實(shí)施直流阻斷。結(jié)果,IF帶通在中心頻率處具有無限深但非常窄的陷波。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級本
超級電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊