你的位置:首頁(yè) > RF/微波 > 正文

ADC 中的集成式容性 PGA :重新定義性能

發(fā)布時(shí)間:2018-04-20 來(lái)源:Miguel Usach Merino 和 Gerard Mora Puchalt 責(zé)任編輯:wenwei

【導(dǎo)讀】ADI專利的容性可編程增益放大器(PGA)相比傳統(tǒng)的阻性PGA具有更佳的性能,包括針對(duì)模擬輸入信號(hào)的更高共模電壓抑制能力。本文描述了斬波容性放大器的工作原理,強(qiáng)調(diào)了需要放大傳感器小信號(hào)至接近供電軌——比如溫度測(cè)量(RTD或熱電偶)和惠斯登電橋——時(shí),此架構(gòu)的優(yōu)勢(shì)。
 
Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)廣泛用于傳感器具有較小輸出電壓范圍和帶寬的應(yīng)用中(比如應(yīng)變計(jì)或熱敏電阻),因?yàn)檫@種架構(gòu)提供高動(dòng)態(tài)范圍。具有高動(dòng)態(tài)范圍是因?yàn)椋啾绕渌麬DC架構(gòu),它具有低噪聲性能。
 
Σ-Δ型轉(zhuǎn)換器基于兩條原理工作:過(guò)采樣和噪聲整形。當(dāng)ADC對(duì)輸入信號(hào)進(jìn)行采樣時(shí),獨(dú)立于采樣頻率的量化噪聲會(huì)在直到采樣頻率一半的整個(gè)頻譜內(nèi)擴(kuò)散。因此,如果輸入信號(hào)以比奈奎斯特理論所推導(dǎo)出的最小值高很多的頻率采樣,則目標(biāo)頻段內(nèi)的量化噪聲下降。
 
圖1顯示了不同采樣頻率下的量化噪聲密度示例。
 
ADC 中的集成式容性 PGA :重新定義性能
圖1.不同采樣頻率下,頻率范圍內(nèi)的量化噪聲密度。
 
一般而言,對(duì)于特定的目標(biāo)頻段,每2個(gè)過(guò)采樣系數(shù)就會(huì)使動(dòng)態(tài)范圍改善3dB(假定為白噪聲頻譜)。Σ-Δ型轉(zhuǎn)換器的第二個(gè)優(yōu)勢(shì)是噪聲傳遞函數(shù)。它將噪聲整形至更高頻率(如圖2所示),進(jìn)一步降低了目標(biāo)頻段內(nèi)的量化噪聲。
 
ADC 中的集成式容性 PGA :重新定義性能
圖2.Σ-Δ噪聲整形
 
此外,Σ-Δ架構(gòu)可能集成數(shù)字濾波器,用來(lái)移除目標(biāo)頻段外的量化噪聲,實(shí)現(xiàn)出色的動(dòng)態(tài)范圍性能,如圖3所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖3.LPF之后的量化噪聲。
 
輸入緩沖器
 
過(guò)采樣架構(gòu)的缺點(diǎn)之一是,相比其它采樣頻率較低的架構(gòu),驅(qū)動(dòng)Σ-Δ型調(diào)制器的輸入緩沖器要求可能會(huì)更嚴(yán)格。采集時(shí)間變得更短,因此緩沖器需要更高帶寬。現(xiàn)代Σ-Δ型轉(zhuǎn)換器片上集成輸入緩沖器,最大程度簡(jiǎn)化使用
 
此外,在檢測(cè)系統(tǒng)中,為檢測(cè)元件提供具有高精度的極高輸入阻抗對(duì)于測(cè)量精度而言極為關(guān)鍵。這使得輸入緩沖器的要求更為嚴(yán)格了。
 
集成輸入緩沖器還有其它挑戰(zhàn)。Σ-Δ型調(diào)制器可在低頻率時(shí)提供極低噪聲,但所有其它元件(比如輸入緩沖器)都會(huì)使熱噪聲增加,而更嚴(yán)重的則是低頻閃爍噪聲,如圖4所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖4.閃爍噪聲。
 
此外,緩沖器失調(diào)也可能增加總系統(tǒng)誤差。通過(guò)系統(tǒng)校準(zhǔn)可以補(bǔ)償失調(diào),但如果失調(diào)漂移相對(duì)較高,那么這種方式就無(wú)法實(shí)現(xiàn),因?yàn)槊看喂ぷ鳒囟劝l(fā)生改變都會(huì)要求系統(tǒng)重新校準(zhǔn),以補(bǔ)償緩沖器失調(diào)。
 
例如,當(dāng)失調(diào)漂移為500 nV/°C時(shí),10°C溫度遞增將等于5 μV失調(diào)范圍,在±2.5 VREF 24位ADC中這相當(dāng)于16.8 LSB,即約為4位。
 
解決這兩個(gè)問(wèn)題的典型途徑是對(duì)緩沖器的輸入和輸出進(jìn)行斬波,如圖5所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖5.斬波放大器。
 
對(duì)輸入進(jìn)行斬波之后,輸入頻率便調(diào)制到較高頻率。緩沖器失調(diào)和閃爍噪聲依然保持其最初的低頻率,因?yàn)樗鼈儾皇茌斎霐夭ǖ挠绊憽?/div>
 
輸出去斬波機(jī)制將輸入頻率解調(diào)回基帶,同時(shí)向上調(diào)制緩沖器產(chǎn)生的失調(diào)和閃爍噪聲至較高頻率,隨后由ADC低通濾波器加以消除。
 
某些情況下,輸入緩沖器可以采用基于電阻的儀表放大器(阻性PGA)來(lái)代替,以使小傳感器信號(hào)滿足全調(diào)制器輸入范圍,最大程度提升動(dòng)態(tài)范圍。需注意,基于電阻的儀表放大器相比差分阻性放大器是更好的選擇,因?yàn)榉至⑹絺鞲衅餍枰叩妮斎胱杩?。阻性PGA可實(shí)現(xiàn)類似的斬波方案,如圖6所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖6.阻性PGA。
 
阻性PGA可能需要級(jí)聯(lián)第二組緩沖器,因?yàn)榉糯笃骺赡軣o(wú)法提供直接驅(qū)動(dòng)調(diào)制器所需要的足夠帶寬。同時(shí),必須保持低功耗,這就確定了電阻值,進(jìn)而確定了放大器帶寬。
 
使用這種放大器拓?fù)涞闹饕獑?wèn)題是,它限制了共模電壓——尤其是在增益大于1的時(shí)候,因?yàn)樽栊訮GA具有取決于輸入信號(hào)的浮動(dòng)共模值,如圖6所示。
 
此外,阻性網(wǎng)絡(luò)失配及其漂移也是影響總誤差預(yù)算的因素之一,因?yàn)樗赡軙?huì)影響大多數(shù)的精度規(guī)格。
 
為避免這些限制,最新的Σ-Δ型轉(zhuǎn)換器采用了容性PGA。
 
容性PGA放大原理與阻性PGA相似:增益取決于電容比,如圖7所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖7.容性PGA(為簡(jiǎn)便起見(jiàn),移除了部分模塊)。
 
為了放大直流信號(hào),容性PGA在PGA輸入端引入了斬波機(jī)制直流輸入信號(hào)調(diào)制到斬波頻率,然后由容性放大器進(jìn)行放大。最后,信號(hào)通過(guò)輸出去斬波解調(diào)回直流。此外,放大器失調(diào)和閃爍噪聲調(diào)制到斬波頻率,并在之后的級(jí)中進(jìn)行低通濾波。
 
相比阻性架構(gòu),這種容性架構(gòu)有一些優(yōu)勢(shì):
 
它能更好地權(quán)衡噪聲與功率,因?yàn)樵肼曉摧^少。需要較少的放大器,而且相比電阻,電容不會(huì)產(chǎn)生噪聲。
 
電容比電阻有非常多的優(yōu)勢(shì)。除了無(wú)噪聲外,電容不會(huì)受到自發(fā)熱影響,且通常具有更好的匹配和溫度漂移。這對(duì)失調(diào)、增益誤差和漂移規(guī)格有正面影響。
 
電容可將輸入共模從信號(hào)鏈共模的其余部分去耦。這樣可以提供CMRR、PSRR和THD等優(yōu)勢(shì)。
 
容性PGA的最大優(yōu)勢(shì)之一,是它的輸入共模范圍可以是軌到軌或更高。這樣便有可能從正供電軌下至負(fù)供電軌的幾乎任何地方對(duì)傳感器共模電壓進(jìn)行偏置。
 
這種容性架構(gòu)結(jié)合了儀表放大器的優(yōu)勢(shì),具有極高的輸入阻抗(因?yàn)檩斎胱杩故且粋€(gè)電容),其優(yōu)勢(shì)是電容(而不是電阻)作為增益元件,增加了放大器的動(dòng)態(tài)范圍——這不僅是因?yàn)樗男盘?hào)擺幅,還因?yàn)槠湓肼曅实木壒省?/div>
 
克服阻性PGA共模限制的常見(jiàn)解決方案是增加或偏移供電軌,或者重新對(duì)中傳感器信號(hào)共模。這樣做的代價(jià)是功耗更高、電源設(shè)計(jì)更復(fù)雜、使用更多外部元件,以及更高的成本。
 
實(shí)際例子
 
在惠斯登電橋中,共模電壓由連接兩個(gè)橋臂的阻抗決定,且與施加的電源成正比。電子秤應(yīng)用即采用這種檢測(cè)拓?fù)?,因?yàn)樗哂嗅槍?duì)應(yīng)變計(jì)的線性檢測(cè)優(yōu)勢(shì);圖8顯示了一個(gè)半橋式II類電路。
 
ADC 中的集成式容性 PGA :重新定義性能
圖8.采用惠斯登拓?fù)洳瑧?yīng)變計(jì)的電子秤。
 
應(yīng)變計(jì)的靈敏度通常為2mV/V?;菟沟请娫丛礁撸`敏度也就越高。為了增加應(yīng)變計(jì)的動(dòng)態(tài)范圍并最大化SNR,電橋可能采用比ADC更高的電源供電。
 
由于阻性PGA的共模限制,電橋應(yīng)當(dāng)采用與ADC相同的電源供電,以便最大程度提升動(dòng)態(tài)范圍;而在容性PGA中,電橋可以采用幾乎為ADC兩倍的電源供電,因?yàn)椴淮嬖谳斎牍材5南拗啤?/div>
 
例如,假設(shè)標(biāo)準(zhǔn)電源為ADC提供3.3V電平,則對(duì)于相同的增益,容性PGA相比阻性PGA的改進(jìn)總結(jié)見(jiàn)表1。
 
表1. 惠斯登電橋中的阻性PGA和容性PGA對(duì)比(假設(shè)使用標(biāo)準(zhǔn)電源和增益)
ADC 中的集成式容性 PGA :重新定義性能
 
可能存在的另一個(gè)問(wèn)題,是當(dāng)電橋的連接位置離ADC較遠(yuǎn)時(shí),接地之間可能有所不同。這也許會(huì)使共模電壓偏移,從而導(dǎo)致ADC輸入共模相對(duì)于電橋不平衡,并降低阻性PGA中的最大允許增益。
 
使容性PGA性能與阻性PGA相當(dāng)?shù)目尚修k法是以更高的電源電壓對(duì)電橋供電。比如,以±3.3 V雙極性電源對(duì)電橋供電,從而增加應(yīng)變計(jì)的靈敏度,但代價(jià)是更高的系統(tǒng)復(fù)雜性和功耗。
 
可能會(huì)得益于容性PGA的另一個(gè)例子是采用電阻式溫度檢測(cè)器(RTD)或熱電偶的溫度測(cè)量應(yīng)用。
 
常用RTD電阻(比如PT100)可以用來(lái)直接檢測(cè)溫度,或間接檢測(cè)熱電偶的冷結(jié),如圖9所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖9.典型熱電偶設(shè)置。
 
每一個(gè)PT100器件都提供不同的導(dǎo)線,采用最受歡迎的高性價(jià)比三線式配置。
 
測(cè)量溫度并消除引線誤差的傳統(tǒng)方法如圖10所示。本例中,集成PGA的Σ-Δ型ADCAD7124-8的內(nèi)部電流源以相同電流驅(qū)動(dòng)雙線式RTD,在兩個(gè)引線上產(chǎn)生相同的失調(diào)誤差,其值與引線電阻成正比。
 
由于 AD7174-8 具有較小的引線電阻和電流(為了最大程度減少自發(fā)熱效應(yīng)),RL3產(chǎn)生的失調(diào)電壓靠近負(fù)供電軌,極大地降低了阻性PGA中允許的最大增益,因?yàn)槠漭斎牍材O啾热菪訮GA同樣將會(huì)非常接近供電軌,在內(nèi)部將共模電壓設(shè)為電源供電軌的一半,允許更高的增益配置,從而提高總動(dòng)態(tài)范圍。
 
建議的解決方案極大降低了系統(tǒng)和硬件連接的復(fù)雜性,因?yàn)榈谌龡l線纜不應(yīng)返回至ADC PCB,并可連接RTD位置附近的地。
 
ADC 中的集成式容性 PGA :重新定義性能
圖10.三線式RTD測(cè)量。
 
為了增加溫度測(cè)量的精度,建議采用四線式測(cè)量。本例中,只使用了一個(gè)電流基準(zhǔn)。為了避免電流源的不精確性,可以將精密電阻用作ADC基準(zhǔn)電壓發(fā)生器來(lái)進(jìn)行比例測(cè)量,如圖11所示。
 
ADC 中的集成式容性 PGA :重新定義性能
圖11 .比例四線式RTD測(cè)量。
 
選擇適當(dāng)?shù)耐獠烤茈娮柚担筊TD上產(chǎn)生的最大電壓等于基準(zhǔn)電壓除以PGA增益。
 
對(duì)于3.3 V電源而言,在阻性PGA中,精密電阻上產(chǎn)生的電壓應(yīng)為1.65 V左右,否則PGA共模電壓將限制最大增益。其結(jié)果是,最大增益信號(hào)應(yīng)等于1.65V。在容性PGA中,不存在輸入共模的限制,因此RTD共模信號(hào)可以靠近頂部供電軌放置,最大程度提升了精密電阻生成的ADC基準(zhǔn)電壓,并因此實(shí)現(xiàn)最高的可選增益和動(dòng)態(tài)范圍。
 
表2總結(jié)了阻性PGA相對(duì)于容性PGA的最大增益,最大電流源為500μA,限制了Pt100的自發(fā)熱(假定B類RTD,此時(shí)最高溫度為600°C,最大VREF為2.5 V)。
 
表2. 四線式RTD比例測(cè)量中的阻性和容性PGA對(duì)比
ADC 中的集成式容性 PGA :重新定義性能
 
結(jié)論
 
相比阻性PGA,容性PGA具有多項(xiàng)重要優(yōu)勢(shì)。諸如噪聲、共模抑制、失調(diào)、增益誤差以及溫度漂移等關(guān)鍵規(guī)格都由于電容作為增益元件的固有溫度穩(wěn)定性以及匹配屬性而得到了改善。
 
另一項(xiàng)重要特性是內(nèi)部共模電壓從放大器內(nèi)部共模電壓中去耦。當(dāng)待放大的輸入信號(hào)為靠近供電軌的共模電壓時(shí),這點(diǎn)尤為重要。阻性PGA的增益選擇嚴(yán)重受限于其共模限制,或者要求更高的供電軌或外部元件將輸入信號(hào)重新偏置到供電軌的一半。而容性PGA卻可以輕松處理這種檢測(cè)場(chǎng)景。
 
 
推薦閱讀:
 
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉