Teledyne e2v通過最新的微波數(shù)字轉(zhuǎn)換器推動(dòng)無線電軟件化
發(fā)布時(shí)間:2020-06-04 來源:Teledyne e2v 責(zé)任編輯:wenwei
【導(dǎo)讀】過去的幾十年里,無線電技術(shù)標(biāo)準(zhǔn)、相關(guān)應(yīng)用和互聯(lián)設(shè)備得到了爆炸式的發(fā)展,對(duì)數(shù)據(jù)帶寬和吞吐量的要求越來越高。據(jù)統(tǒng)計(jì),45億因特網(wǎng)用戶和迅速發(fā)展的物聯(lián)網(wǎng)(IoT)變革對(duì)器件性能要求的年增長速度超過25%1,這是一個(gè)巨大的挑戰(zhàn)。當(dāng)今,隨著在家辦公日益普及,地面和空間通訊的關(guān)鍵基礎(chǔ)設(shè)施已投入測試。
目前,關(guān)鍵的無線電頻段資源短缺,無法滿足需要。這意味著現(xiàn)代通訊網(wǎng)絡(luò)需要找到更明智的方式以保持?jǐn)?shù)據(jù)的流通。一種有效的方式是分隔和重用寶貴的射頻頻段,最大化其利用率。在過去的幾年里,新建的基礎(chǔ)設(shè)置已開始考慮到未來的需要。
目前因特網(wǎng)流量的增長量超過25%(CAGR),2020年每月超過200EB(EB=1018字節(jié)或106TB),2022年預(yù)計(jì)達(dá)到每年4.2 ZB(數(shù)據(jù)來源:Cisco 2019)
本文將討論一些未來電子數(shù)據(jù)交換的核心技術(shù)。在軟件定義無線電/網(wǎng)絡(luò)(SDR/SDN)中,軟件技術(shù)是影響最大的因素。當(dāng)今,業(yè)內(nèi)普遍認(rèn)為虛擬系統(tǒng)硬件以及將人工智能引入復(fù)雜的操作流程,可實(shí)現(xiàn)最高的系統(tǒng)效率、利用率和動(dòng)態(tài)敏捷度。聽起來像是科幻小說?事實(shí)上,這種技術(shù)即將到來。
如今,無線網(wǎng)絡(luò)已經(jīng)非常復(fù)雜,無法通過使用諸如設(shè)計(jì)時(shí)間服務(wù)計(jì)劃或簡單的通用設(shè)計(jì)等傳統(tǒng)的方法優(yōu)化。人們需要更智能、更高級(jí)的技術(shù):例如認(rèn)知無線電(CR)——這種無線電能監(jiān)測動(dòng)態(tài)網(wǎng)絡(luò)行為,識(shí)別不同應(yīng)用的需求,自動(dòng)調(diào)整其物理層參數(shù),使網(wǎng)絡(luò)性能和服務(wù)質(zhì)量(QoS)最大化。在許多情況下,不同的應(yīng)用共享相同的無線通道和頻段,難以同時(shí)滿足不同的QoS標(biāo)準(zhǔn)?,F(xiàn)在使用的基本控制架構(gòu)無法同時(shí)平衡關(guān)鍵的功能參數(shù)需求,包括延遲、吞吐量、可靠性和適應(yīng)力。若是考慮到不同的通訊需求,如低/高數(shù)據(jù)率、時(shí)間關(guān)鍵/非時(shí)間關(guān)鍵信號(hào)等,則更加難以實(shí)現(xiàn)。
軟件化是一種可行的解決方案。軟件化做為一種相對(duì)較新的術(shù)語,是指利用算法解決之前由硬件解決的通信問題。為了實(shí)現(xiàn)軟件化,未來的系統(tǒng)會(huì)逐漸虛擬化和數(shù)字可控化。
軟件化如何影響網(wǎng)絡(luò)設(shè)計(jì)和規(guī)劃?有如下兩種情況:
•SDR:通過認(rèn)知無線電技術(shù),越來越多的應(yīng)用可使用軟件實(shí)現(xiàn)調(diào)制、糾錯(cuò)甚至載波頻率和通道帶寬,以滿足動(dòng)態(tài)運(yùn)行的需要。使用波束成型、相控陣天線以及快速載波跳頻可進(jìn)一步增強(qiáng)SDR的性能。
•SDN:控制平面和數(shù)據(jù)平面的硬件互相解耦,控制集中化,并從具體應(yīng)用中抽象出基礎(chǔ)設(shè)計(jì)。
邁向軟件化
歐盟地平線2020計(jì)劃預(yù)測了下一代因特網(wǎng)(NGI)的挑戰(zhàn),并在2018年底發(fā)布了網(wǎng)絡(luò)世界2020討論文檔《NGI的智能網(wǎng)絡(luò)2》。這篇詳細(xì)的文檔討論了基于軟件化的下一代網(wǎng)絡(luò)建設(shè)的多種挑戰(zhàn),特別是SDR和SDN。
這篇文檔概述了研究和發(fā)展的領(lǐng)域,并介紹了當(dāng)今網(wǎng)絡(luò)基礎(chǔ)設(shè)施的情況。不出所料,今天工程師和大眾最熟知的挑戰(zhàn)是數(shù)據(jù)安全和個(gè)人隱私。考慮到物理網(wǎng)(IoT)對(duì)今天的工業(yè)4.0革命的影響,越來越多的設(shè)備通過網(wǎng)絡(luò)互連,服務(wù)規(guī)劃是另一個(gè)重要的挑戰(zhàn)。
系統(tǒng)越來越復(fù)雜,需支持?jǐn)?shù)據(jù)量剪切和越來越大的容量,還有各種不同的通訊技術(shù)(無線標(biāo)準(zhǔn)、光學(xué)互連、衛(wèi)星通訊)以及眾多的用戶和服務(wù)提供商。難怪現(xiàn)在我們期待新的人工智能和機(jī)器學(xué)習(xí)解決方案能將上述的需求一并滿足,這需要同時(shí)平衡集中和分散的數(shù)據(jù)方法,如同步進(jìn)行云計(jì)算、霧計(jì)算和邊緣計(jì)算。
提高射頻敏捷度
Teledyne e2v是一家總部在法國格勒諾布爾的公司,專業(yè)從事微波技術(shù)的研發(fā)。早在第一款軍用雷達(dá)發(fā)明的時(shí)候,Teledyne e2v就涉足了微波的領(lǐng)域。70多年前,Teledyne e2v已開始設(shè)計(jì)行波管和閘流管系統(tǒng)。
無線電軟件化是什么?
無線電軟件化是通過應(yīng)用算法實(shí)現(xiàn)可編程、可重復(fù)配置的無線電通信通道或系統(tǒng)。這些無線電可以使軟件定義無線電(SDR),甚至是認(rèn)知無線電(CR),即能夠識(shí)別本地射頻環(huán)境并設(shè)置其物理層參數(shù)(載波頻率、調(diào)制模式等)以最大化頻譜容量利用率的無線電。
隨著過去10年數(shù)字電子技術(shù)的發(fā)展,出現(xiàn)了越來越多的復(fù)雜敏捷無線電系統(tǒng)和相關(guān)的應(yīng)用,如即將到來的5G移動(dòng)無線終端。但是,若不仔細(xì)規(guī)劃、設(shè)計(jì)網(wǎng)絡(luò)系統(tǒng),則難以保證未來通訊系統(tǒng)的流暢度。關(guān)鍵的數(shù)據(jù)需要在機(jī)器和機(jī)器(M2M)之間交換,如自動(dòng)售貨機(jī)網(wǎng)絡(luò)以及自動(dòng)駕駛和交通管理系統(tǒng)等,使得系統(tǒng)對(duì)吞吐量和延遲的壓力越來越大。
1995年,Teledyne e2v研發(fā)了第一代寬帶數(shù)據(jù)轉(zhuǎn)換器,包括模數(shù)轉(zhuǎn)換器和數(shù)模轉(zhuǎn)換器芯片(ADC和DAC),為提高射頻系統(tǒng)的敏捷度和靈活性做出了巨大貢獻(xiàn)。
這些器件支持高頻模擬射頻信號(hào),并將其下變頻/上變頻至數(shù)字域。它們是數(shù)字控制射頻無線電系統(tǒng)的關(guān)鍵器件,可提高下一代通訊設(shè)施的控制靈活性。
軟件化或數(shù)字控制的本質(zhì)
無線電通訊系統(tǒng)將載波頻率(通常是一個(gè)單音信號(hào))和數(shù)據(jù)(信息)信號(hào)調(diào)制(或混合)。ADC采樣信號(hào)頻率,產(chǎn)生連續(xù)的數(shù)字信號(hào)流,然后數(shù)字信號(hào)處理器(DSP)將有用的信息從信號(hào)流中抽取出來。而DAC通常用于發(fā)射端,其產(chǎn)生定義的合成射頻信號(hào)譜,并將信號(hào)功率投射于特定的通道。
在當(dāng)代的外差式無線電設(shè)計(jì)中,需使用一個(gè)或幾個(gè)中頻環(huán)節(jié)將信號(hào)能量向上或向下投射于無線電頻譜中,并轉(zhuǎn)換到轉(zhuǎn)換器的基帶頻率范圍。這些中頻需要混合電路和本振頻率振蕩器,帶來設(shè)置和校準(zhǔn)的挑戰(zhàn),并增加成本和設(shè)計(jì)復(fù)雜度。幸運(yùn)的是,隨著半導(dǎo)體器件技術(shù)(例如晶體管躍遷和最大頻率)的高速發(fā)展,用戶可大大減少中頻模擬混頻器的環(huán)節(jié)和其本振的需求,直接在射頻信號(hào)頻段數(shù)字化。支持多奈奎斯特采樣的ADC可實(shí)現(xiàn)直接射頻轉(zhuǎn)換,提供精確的、無需混頻器的通道選擇(或調(diào)節(jié))功能,并支持多種方便數(shù)字信號(hào)處理器實(shí)現(xiàn)的數(shù)字解碼和解調(diào)的模式。
系統(tǒng)發(fā)射端的情況也是類似的?,F(xiàn)代的寬帶DAC可將信號(hào)能量投射在微波頻率,允許數(shù)字控制,為通訊設(shè)施提供可編程性和靈活性。這些智能、靈活的無線電包括動(dòng)態(tài)可調(diào)整的物理層,便于處理短時(shí)通訊高峰或適配不同的工作模式。
圖 1 - 簡化的接收端信號(hào)鏈路
a) 傳統(tǒng)的單級(jí)外差式無線電,需下混頻器 b) 利用ADC內(nèi)部采樣信號(hào)混疊的直接轉(zhuǎn)換系統(tǒng)
利用數(shù)學(xué)增強(qiáng)現(xiàn)代通訊系統(tǒng)的敏捷度和靈活性
多年來,采樣定理、傅里葉變換和卷積等數(shù)學(xué)理論對(duì)通訊系統(tǒng)的發(fā)展做出了很大貢獻(xiàn)。當(dāng)在無線電系統(tǒng)中應(yīng)用數(shù)據(jù)轉(zhuǎn)換器時(shí),用戶將得到更多的便利。
圖1中可明顯看出轉(zhuǎn)換器和數(shù)字信號(hào)處理對(duì)接收路徑的影響。 當(dāng)代的外差式設(shè)計(jì)(圖1a)需要使用一個(gè)模擬下混頻器,將接收的信號(hào)轉(zhuǎn)換到ADC的第二奈奎斯特域。
而在直接射頻處理架構(gòu)中(圖1b),ADC利用信號(hào)混疊直接實(shí)現(xiàn)第一級(jí)下變頻。在ADC之后的下變頻使用DSP內(nèi)部的不同的數(shù)字控制振蕩器鎖定到特定的載波信號(hào)。
最終,這種先進(jìn)的數(shù)字方法應(yīng)用于高靈活性的接收系統(tǒng)中,用于處理多個(gè)通道,并由數(shù)字域變量定義(圖2)。這是一種簡單的優(yōu)化認(rèn)知無線電的方案。
圖 2 - 在增強(qiáng)型SDR中,數(shù)字控制振蕩器可調(diào)節(jié)任何數(shù)量的獨(dú)立通道
接收端射頻欠采樣
在采樣系統(tǒng)里,奈奎斯特-香農(nóng)采樣定理規(guī)定了模擬數(shù)字轉(zhuǎn)換器以采樣率2B采樣最大帶寬為B的信號(hào)時(shí),可在數(shù)字域還原原始的信號(hào)。 通過使用帶通濾波器,則有可能使用欠采樣直接將超過帶寬限制的高奈奎斯特域的射頻信號(hào)下變頻至其基帶頻譜范圍(圖2)。欠采樣需使用ADC前端的采樣保持放大器(TH)。
TH的作用類似于可“折疊”射頻信號(hào)的頻率轉(zhuǎn)換器,在下面的例子里將20到22.5GHz的信號(hào)轉(zhuǎn)換到ADC的基帶(第一奈奎斯特域,即0到2.5GHz)。這去除了中頻生成的環(huán)節(jié)(如本振和中頻),極大地簡化了模擬信號(hào)路徑的設(shè)計(jì)(圖3)。
3 - 接收端2.5 GHz帶寬信號(hào)(載波頻率21.25GHz)的TH欠采樣(fs = 5 GHz)
這是實(shí)現(xiàn)數(shù)字控制無線電設(shè)計(jì)的基本步驟,在先前的介紹6 Gsps ADC EV12AQ600的文章3里有詳細(xì)描述。這款A(yù)DC的寬帶TH支持K波段信號(hào)的欠采樣。
發(fā)射端多奈奎斯特域頻率合成
在發(fā)射端,傳統(tǒng)的外差式無線電的發(fā)射DAC通常在第一奈奎斯特域(NZ1)輸出信號(hào)功率,并通過低通濾波器濾除混疊信號(hào)功率。如果發(fā)射DAC(TxDAC)可提供足夠大的帶寬,能將信號(hào)功率延展到更高的奈奎斯特域呢?如圖4所示,這時(shí),可使用帶通濾波器選擇目標(biāo)信號(hào)頻段。
圖 4 - 在NZ1產(chǎn)生的合成射頻信號(hào),并混疊到更高的奈奎斯特域(fs = 6 GHz)
例如,EV12DS480 TxDAC可延展信號(hào)功率直到26.5GHz,并以8.5Gsps的采樣率采樣。
ADC欠采樣和DAC多奈奎斯特域頻率合成是射頻數(shù)字控制的兩個(gè)關(guān)鍵要素,也是Teledyne e2v進(jìn)一步增強(qiáng)下一代無線電設(shè)計(jì)的目標(biāo)。
KA波段創(chuàng)新的動(dòng)力
歐盟地平線2020計(jì)劃推動(dòng)的星際元器件工程,其目標(biāo)是開發(fā)新的寬帶數(shù)據(jù)轉(zhuǎn)換器以簡化射頻信號(hào)鏈路并推進(jìn)Ka波段直接轉(zhuǎn)換技術(shù)的發(fā)展。在這樣的愿景下,元器件需實(shí)現(xiàn)更高的系統(tǒng)集成度,即增加射頻通道密度、減少功耗、增加帶寬和提高動(dòng)態(tài)性能,同時(shí)促進(jìn)歐洲宇航業(yè)務(wù)的發(fā)展。我們預(yù)計(jì)這個(gè)工程將影響深遠(yuǎn),包括增強(qiáng)通訊基礎(chǔ)設(shè)施和地球觀測能力等。
星際工程也推動(dòng)Teledyne e2v研發(fā)新的數(shù)據(jù)轉(zhuǎn)換器。Teledyne e2v正與星際工程密切合作,計(jì)劃研發(fā)一款全新的模擬前端(AFE)樣片。這款A(yù)FE能大幅擴(kuò)展微波頻率采樣帶寬,實(shí)現(xiàn)最先進(jìn)的微波直接數(shù)字下變頻和頻率合成。
樣片的目標(biāo)電性能
• 高性能模擬采樣器,輸入帶寬高達(dá)Ka波段
• Ka波段較高的無雜散動(dòng)態(tài)范圍(SFDR)
• 單端輸入的信號(hào)路徑(無需巴倫)
• 高編碼效率,ESIstream串行數(shù)字接口
• 強(qiáng)大的時(shí)鐘管理,包括同步鏈功能,可在波束成型應(yīng)用
中實(shí)現(xiàn)簡單的相位對(duì)齊多通道系統(tǒng)
圖 5 - 直接射頻轉(zhuǎn)換采樣器的樣片
Teledyne e2v計(jì)劃研發(fā)的直接射頻轉(zhuǎn)換采樣器(圖5)預(yù)計(jì)-3dB模擬輸入帶寬高達(dá)微波Ka波段(即在26.5到40GHz之間)。除了無與倫比的帶寬,這款樣片還將包括一些獨(dú)特的功能,便于簡單地應(yīng)用于實(shí)際的系統(tǒng)中。
這些功能包括:
• 單端模擬輸入信號(hào)路徑,簡化印制板電路設(shè)計(jì)和布線
• 無需使用昂貴的、大體積的HF巴倫,可幫助用戶:
o直接從微波數(shù)字采樣
o減少模擬信號(hào)采樣器的信號(hào)失真
•獨(dú)特的微波采樣器和低抖動(dòng)時(shí)鐘管理
• 在模擬前端(AFE)的輸出端,這款器件沒有使用LVDS,而是使用許可證免費(fèi)的ESIstream高速串行接口系統(tǒng),與市場上大多數(shù)的FPGA兼容(包括Xilinx的KU60系列)。
星際工程也促進(jìn)了下一代TxDAC的發(fā)展。EV12DD700擁有超過K波段的多奈奎斯特域的射頻性能。這款器件有多種用戶定義的輸出數(shù)據(jù)模式,包括一種特殊的“雙射頻”模式,與現(xiàn)有的DAC產(chǎn)品EV12DS480相比,極大地提升了信號(hào)輸出的能力。這款最新的轉(zhuǎn)換器的采樣率超過8Gsps,可靈活應(yīng)用于各種數(shù)字控制系統(tǒng)。
模塊化全敏捷度微波SDR簡化設(shè)計(jì)
輸入信號(hào)路徑簡化
減少復(fù)雜微波射頻系統(tǒng)的串?dāng)_并降低EMI敏感度無疑是一個(gè)巨大的設(shè)計(jì)挑戰(zhàn)。因此,大多數(shù)的高端數(shù)據(jù)轉(zhuǎn)換器的信號(hào)和時(shí)鐘輸入使用差分平衡信號(hào)。這一方案非常有效,幾乎成了今天的設(shè)計(jì)標(biāo)準(zhǔn)。但是,差分電路設(shè)計(jì)的缺點(diǎn)有以下兩個(gè)方面:
• ADC的輸入通常都是單端源,比如通過同軸電纜傳遞到接收端的射頻天線信號(hào)。為了處理這種單端信號(hào),需在每個(gè)輸入端(微波采樣器和ADC)增加一個(gè)巴倫并平衡系統(tǒng)阻抗。這些巴倫需占用PCB面積,并相當(dāng)昂貴,特別是應(yīng)用于Ka波段的設(shè)計(jì)時(shí)。
•處理差分設(shè)計(jì)中的高速時(shí)鐘邊沿需精確匹配PCB走線的長度,這極大地增加了設(shè)計(jì)的難度。而使用單端輸入可減少或消除接收機(jī)中這些環(huán)節(jié)累積的信號(hào)相位誤差。
增強(qiáng)的緊湊數(shù)據(jù)互聯(lián)
過去十年,數(shù)據(jù)互聯(lián)系統(tǒng)中的數(shù)據(jù)轉(zhuǎn)換器得到了快速的發(fā)展。越來越多的器件放棄了多路差分串行LVDS數(shù)據(jù)線配合獨(dú)立的數(shù)據(jù)時(shí)鐘的方案,轉(zhuǎn)向使用集成了時(shí)鐘的超高速接收機(jī)的串行鏈路。典型的接口包括JESD204的多代協(xié)議和許可證免費(fèi)的ESIstream,這兩種接口都支持超過12Gbps的數(shù)據(jù)率。
使用串行協(xié)議,可以更方便地使用光纖物理層替代銅線,并進(jìn)一步提高通道密度。在這些應(yīng)用中,抽值和插值技術(shù)可幫助減少數(shù)據(jù)傳輸?shù)木€纜數(shù)量。
通過采樣時(shí)鐘精度保持信號(hào)相位信息
隨著采樣時(shí)鐘頻率的提高,必須保證整個(gè)系統(tǒng)中采樣邊沿的確定性,特別是對(duì)于波束成型微波無線電系統(tǒng)。信號(hào)采樣相位精度非常重要,因?yàn)樗鼪Q定了整個(gè)系統(tǒng)(例如高精度合成孔徑EO雷達(dá))的空間測量精確度。
Teledyne e2v的獨(dú)特的同步鏈技術(shù)4,5通過使用相對(duì)低速的脈沖沿將任意數(shù)量的轉(zhuǎn)換器鎖定到相同的高精度采樣時(shí)鐘,成功解決了這一由同步信號(hào)的亞穩(wěn)態(tài)引起的挑戰(zhàn)?,F(xiàn)在,用戶可以實(shí)現(xiàn)多個(gè)通道的并聯(lián),無需煩惱如何保證多個(gè)分布式射頻系統(tǒng)(用于相控陣和MIMO應(yīng)用等)的相位對(duì)齊。
總結(jié)——高密度模塊和天線更接近
這個(gè)項(xiàng)目的目的是顯著擴(kuò)展采樣帶寬,提高寬帶產(chǎn)品系列的性能,以滿足星際項(xiàng)目和市場的需要。 將直接轉(zhuǎn)換技術(shù)應(yīng)用于微波Ka波段確實(shí)非常重要并且極具挑戰(zhàn)。
之前的研究工作已經(jīng)成功證明K波段直接轉(zhuǎn)換的可行性。需要指出,這一技術(shù)同樣可用于高可靠性的宇航應(yīng)用,這些應(yīng)用通常需較高的總劑量防輻射性能。
Teledyne e2v正著手解決所有的技術(shù)問題,預(yù)計(jì)在不遠(yuǎn)的將來推出高靈活性數(shù)據(jù)轉(zhuǎn)換器片上系統(tǒng)(SiP)模塊。這些模塊包含多輸入/多輸出的ADC/DAC、微波采樣器和相關(guān)的時(shí)鐘管理電路,集成度很高,可放在離天線更近的地方。這樣,超寬帶CR將成為現(xiàn)實(shí),高敏捷度無線電基礎(chǔ)設(shè)施(至少其物理層)的挑戰(zhàn)將得到解決。SDR將變成靈活SDN系統(tǒng)中的一個(gè)至關(guān)重要的部分。
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對(duì)陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對(duì)陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對(duì)微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級(jí)本
超級(jí)電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊