悄悄告訴你們一個(gè)低成本儀表放大器設(shè)計(jì)方法
發(fā)布時(shí)間:2021-05-12 來源:ADI 責(zé)任編輯:wenwei
【導(dǎo)讀】在許多應(yīng)用中,ADC需要在存在大共模信號(hào)的情況下處理一個(gè)很小的差分輸入信號(hào)。傳統(tǒng)的儀表放大器(In-Amp)只具有單端輸出和有限的共模范圍,因此在這些應(yīng)用中并不常用。為了充分利用這些器件的高性能和低成本,可以設(shè)計(jì)一個(gè)簡單的 電路,將其單端輸出轉(zhuǎn)換為差分輸出,并且改善其輸入共模范圍,使之更適合這些應(yīng)用。
許多低成本儀表放大器所具備的帶寬、直流精度和低功耗可以滿足所有的系統(tǒng)要求。使用儀表放大器的另一好處是,用戶無需構(gòu)建自己的差分放大器,因此省去了很多高成本的分立器件。本文將提出一種簡單的方法來構(gòu)建一個(gè)低成本儀表放大器并優(yōu)化其性能。此外,該解決方案的 成本和性能與單芯片儀表放大器不相上下。
圖1詳細(xì)介紹了所提出的精密系統(tǒng)設(shè)計(jì),該設(shè)計(jì)允許用戶在存在高共模電壓的情況下測量差分信號(hào)。該電路包括一個(gè)輸入緩沖器、一個(gè)ADC驅(qū)動(dòng)器和一個(gè)基準(zhǔn)電壓源。緩沖器驅(qū)動(dòng)儀表放 大器的參考引腳,并將單端輸出轉(zhuǎn)換為差分輸出。該電路具有非常高的輸入共模電壓范圍。它可以處理高達(dá)±270 V的共模電壓(采用±15 V電源供電),在正負(fù)方向幾乎達(dá)到電源電壓的20倍,這是電機(jī)控制應(yīng)用的關(guān)鍵。此外,還對輸入提供高達(dá) ±500 V的共?;虿钅K沧儽Wo(hù)。
圖1. 單端輸入差分輸出放大器
此應(yīng)用使用±5 V電源,這樣輸入電壓才能具有±80 V共模范圍。
差分輸出由如下公式確定:
共模輸出由如下公式設(shè)置:
這個(gè)電路的好處是直流差分精度取決于AD629差動(dòng)放大器和 AD8421儀表放大器,而不是運(yùn)算放大器或者外部10 kΩ電阻。此外,這個(gè)電路充分利用了儀表放大器對其基準(zhǔn)電壓相關(guān)的輸出電壓的精確控制。雖然運(yùn)算放大器的直流性能和電阻匹配會(huì)影響直流共模輸出精度,但是這些誤差很可能會(huì)被信號(hào)鏈路上的下一個(gè)器件抑制,因此它對整個(gè)系統(tǒng)精度的影響將會(huì)很小。
為獲得最佳交流性能,推薦使用具有高帶寬和高壓擺率的運(yùn)算放大器。此電路中選擇的運(yùn)算放大器是ADA4807。
為了避免寄生電容使ADA4807不穩(wěn)定,電阻至反相輸入端之間的走線長度應(yīng)盡可能短。如果必須使用較長的走線,需使用阻值較低的電阻。
高性能ADC通常采用5 V單電源,并具有自身的基準(zhǔn)電壓。該基準(zhǔn)電壓用作差分輸出的共模電壓,從而無需使用基準(zhǔn)電壓源。因此,其輸出與ADC成比例,這意味著ADC的VREF任何變化都不會(huì)影響系統(tǒng)的性能。
此差動(dòng)放大器抑制共模電壓的能力取決于AD629差動(dòng)放大器內(nèi)部微調(diào)電阻的比例匹配。因此,它比采用分立式放大器的儀表放大器更好。
對于采用0.1%外部電阻的分立式放大器,CMR限制為54 dB。儀表放大器集成了精密的激光微調(diào)電阻,使系統(tǒng)的CMR可達(dá)到80 dB或更高。這些電阻均采用相同的低漂移薄膜材料制成,因此在一定溫度范圍內(nèi)可提供出色的比例匹配。
ADC可采用5V單電源供電,參考引腳上有2.5V低阻抗電壓源。這樣可將輸出設(shè)為中間電源,并升高ADC輸入端呈現(xiàn)的共模電壓。
示波器輸出波形曲線如圖2所示。兩個(gè)儀表放大器的增益均為 1。VIN是一個(gè)大共模電壓上的1 V pp 10 kHz正弦波。VOUT+和VOUT–分別是±0.5 V pp正弦波和余弦波。VOUT_diff是1 V pp差分輸出電壓,也就是消除共模信號(hào)后的VIN。
圖2. 電路的性能:
頂部:兩個(gè)互補(bǔ)輸出
中間:帶有大共模信號(hào)的輸入電壓
底部:差分輸出
通過增加一個(gè)電阻RG可以提高儀表放大器的增益:
此電路也可以用于功耗敏感型應(yīng)用??傡o態(tài)電流為5 mA,采用 5V雙電源,其功耗僅約50 mW,相較于其他采用基本ADC驅(qū)動(dòng)器(例如,AD8138和AD8131差分驅(qū)動(dòng)放大器)或分立式放大器的解決方案,功耗節(jié)省達(dá)50%。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級(jí)本
超級(jí)電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊