精密ADC用濾波器設(shè)計(jì)的實(shí)際挑戰(zhàn)和考慮
發(fā)布時(shí)間:2018-04-24 責(zé)任編輯:wenwei
【導(dǎo)讀】精密模數(shù)轉(zhuǎn)換器應(yīng)用廣泛,如儀器儀表和測量、電力線繼電保 護(hù)、過程控制、電機(jī)控制等。目前,SAR 型ADC的分辨率可達(dá)18 位甚至更高,采樣速率為數(shù)MSPS;Σ-Δ 型ADC 的分辨率則達(dá)到24位甚至32位,采樣速率為數(shù)百kSPS。為了充分利用高性能ADC而不限制其能力,用戶在降低信號鏈噪聲方面(例如實(shí)現(xiàn)濾波器)面臨的困難越來越多。
本文討論在ADC信號鏈中實(shí)現(xiàn)模擬和數(shù)字濾波器以便達(dá)到最佳性能所涉及到的設(shè)計(jì)挑戰(zhàn)和考慮。如圖1 所示,數(shù)據(jù)采集信號鏈可以使用模擬或數(shù)字濾波技術(shù),或兩者的結(jié)合。精密SAR型和Σ-Δ型ADC一般在第一奈奎斯特區(qū)進(jìn)行采樣,因此,本文將著重討論低通濾波器。本文的意圖不是討論低通濾波器的具體設(shè)計(jì)技術(shù),而是討論其在ADC電路中的應(yīng)用。
圖1.一般數(shù)據(jù)采集信號鏈
理想濾波器和實(shí)際濾波器
理想低通濾波器應(yīng)當(dāng)具有很陡的過渡帶,其通帶應(yīng)具有出色的 增益平坦度,如圖2 中的磚墻虛線所示。此外,阻帶衰減應(yīng)將 任何殘余帶外信號降低至0。某些常用實(shí)際濾波器的響應(yīng)如圖2 中的彩色線條所示。如果通帶增益不平坦或有紋波,這種響應(yīng) 可能會影響基頻信號。阻帶衰減不是無限的,會限制對帶外噪 聲的篩選。過渡帶也可能沒有陡峭的滾降,導(dǎo)致對截止頻率周 圍的噪聲衰減不佳。另外,所有非理想濾波器都會引入相位延 遲或群延遲。
圖2.理想濾波器與實(shí)際濾波器的幅度響應(yīng)對比
模擬濾波器與數(shù)字濾波器
模擬低通濾波器可以在ADC 轉(zhuǎn)換之前消除信號路徑中的高頻 噪聲和干擾,幫助避免混疊噪聲污染信號。它還能消除濾波器 帶寬之外的過驅(qū)信號的影響,避免調(diào)制器飽和。發(fā)生輸入過壓 時(shí),模擬濾波器還能限制輸入電流,衰減輸入電壓。因此,它 能保護(hù)ADC 輸入電路。疊加于接近滿量程信號上的噪聲尖峰 可能會讓ADC 的模擬調(diào)制器飽和,必須利用模擬濾波器將其 衰減。
由于數(shù)字濾波發(fā)生在轉(zhuǎn)換之后,因而可以移除轉(zhuǎn)換過程中注入 的噪聲。在實(shí)際應(yīng)用中,采樣速率遠(yuǎn)高于奈奎斯特理論指出的 兩倍基頻信號頻率。因此,后置數(shù)字濾波器可以利用針對更高 信噪比和更高分辨率的濾波技術(shù)來降低轉(zhuǎn)換過程中注入的噪 聲,例如:信號帶寬之外的輸入噪聲、電源噪聲、基準(zhǔn)源噪聲、 數(shù)字接口饋通噪聲、ADC 芯片熱噪聲或量化噪聲。
表1簡要列出了模擬濾波器與數(shù)字濾波器的優(yōu)點(diǎn)和缺點(diǎn)。
表1.模擬濾波器與數(shù)字濾波器
模擬濾波器考慮
抗混疊濾波器放在ADC 之前,因此這些濾波器必須為模擬濾 波器。理想抗混疊濾波器具有如下特性:通帶內(nèi)具有單位增益, 無增益變化,混疊衰減水平與所用數(shù)據(jù)轉(zhuǎn)換系統(tǒng)的理論動態(tài)范 圍一致。
根據(jù)架構(gòu)不同,ADC 會有不同的輸入電阻,這會影響輸入濾 波器設(shè)計(jì)。以下考慮關(guān)系到ADC 模擬輸入濾波器的設(shè)計(jì)。
與ADC 前端接口的RC 抗混疊濾波器的限制
在Alan Walsh 為Analog Dialogue 雜志撰寫的文章"精密SAR 型模數(shù)轉(zhuǎn)換器的前端和放大器和RC 濾波器設(shè)計(jì)" 中,有一個(gè)針對AD7980ADC 的RC 濾波器應(yīng)用示例,如圖3 所示。
算出的RC 濾波器是一個(gè)低通濾波器,截止帶寬為3.11 MHz。 但是,某些設(shè)計(jì)人員可能會意識到,3.11 MHz 遠(yuǎn)大于100 kHz 的輸入信號頻率,因此,該濾波器無法有效降低帶外噪聲。為 實(shí)現(xiàn)更高動態(tài)范圍,可以換用590 Ω 電阻,以獲得100 kHz 的 –3 dB 帶寬。這種方法主要有兩個(gè)問題。由于通帶中會有更多 衰減,對于AD7980 ADC 示例,100 kHz 附近的幅度衰減最高 可達(dá)30%,因此,信號鏈精度會大大降低。帶寬越小,則建立 時(shí)間越長,這使得AD7980 的內(nèi)部采樣保持電容無法在指定的 采集時(shí)間內(nèi)完成充電,因而無法執(zhí)行下一次有效轉(zhuǎn)換。這導(dǎo)致 ADC 轉(zhuǎn)換精度降低。
設(shè)計(jì)人員應(yīng)當(dāng)確保ADC 之前的RC 濾波器能在目標(biāo)采集時(shí)間內(nèi) 完全建立。這對需要較大輸入電流或具有等效的較小輸入阻抗 的精密ADC 來說異常重要。某些Σ-Δ 型ADC 在無緩沖輸入模 式下對輸入RC 值的要求最高。可以將具有較大電阻或電容的超 窄低通濾波器放在一般具有較大輸入阻抗的輸入放大器之前。 或者可以選擇具有極高輸入阻抗的ADC,例如ADAS3022其 輸入阻抗為500 MΩ。
圖3.采用16 位1 MSPS ADC AD7980 的RC 濾波器
1. 多路復(fù)用采樣信號鏈的濾波器建立時(shí)間
在通道間切換時(shí),多路復(fù)用輸入信號通常含有較大的階躍。最 差情況下,一個(gè)通道處于負(fù)滿量程,而下一個(gè)通道則處于正滿 量程(見圖4)。這種情況下,當(dāng)多路復(fù)用器切換通道時(shí),輸入 階躍大小將是ADC 的滿量程。
對于這些通道,可以在多路復(fù)用器之后使用一個(gè)單通道濾波 器,使得設(shè)計(jì)更簡單,成本更低。如上所述,模擬濾波器必定 會引入建立時(shí)間。每次多路復(fù)用器在通道間切換時(shí),該單通道 濾波器都必須充電到所選通道的值,因而會限制吞吐速率。為 提高吞吐速率,可以在多路復(fù)用器之前為每個(gè)通道添加一個(gè)濾 波器,但這樣做會提高成本。
圖4.多路復(fù)用輸入信號鏈
2. 通帶平坦度和過渡帶限制與噪聲的關(guān)系
遭遇高噪聲的應(yīng)用,尤其是在接近第一奈奎斯特區(qū)邊緣處發(fā)生 很高干擾的應(yīng)用,需要滾降厲害的濾波器。然而,人們已從實(shí)際模擬低通濾波器得知:從低頻到高頻,幅 度會滾下來,并有一個(gè)過渡帶。增加濾波器級數(shù)或階數(shù)可以改 善帶內(nèi)信號的平坦度,并使過渡帶收窄。然而,這些濾波器的 設(shè)計(jì)很復(fù)雜,因?yàn)樗鼈儗υ鲆嫫ヅ浞浅C舾校灾劣跓o法實(shí)現(xiàn) 數(shù)階的衰減幅度。此外,在信號鏈中增加任何元件(如電阻或 放大器)都會引入帶內(nèi)噪聲。
圖5.不同階數(shù)的理想巴特沃茲濾波器過渡帶
對于某些具體應(yīng)用,模擬濾波器設(shè)計(jì)的復(fù)雜度和性能需要進(jìn)行 取舍。例如,在采用AD7606的電力線繼電器保護(hù)應(yīng)用中,對 于50 Hz/60 Hz 基頻輸入信號及其相關(guān)前五次諧波,保護(hù)通道 的精度要求低于測量通道。保護(hù)通道可以使用一個(gè)一階RC 濾 波器,而測量通道使用二階RC 濾波器,以便提供更好的帶內(nèi) 平坦度和更急劇的滾落過渡。
3. 同步采樣的相位延遲和匹配誤差
濾波器設(shè)計(jì)不僅僅關(guān)系到頻率設(shè)計(jì),用戶可能還需要考慮模擬 濾波器的時(shí)域特性和相位響應(yīng)。在某些實(shí)時(shí)應(yīng)用中,相位延遲 可能非常重要。如果相位隨輸入頻率而變化,那么相位變動將 更糟糕。濾波器的相位變化一般用群延遲來衡量。對于非常數(shù) 群延遲,信號會在時(shí)間中擴(kuò)散,導(dǎo)致脈沖響應(yīng)變得很差。
對于多通道同步采樣應(yīng)用,例如電機(jī)控制或電力線監(jiān)控中的相 電流測量,還應(yīng)考慮相位延遲匹配誤差。確保濾波器在多個(gè)通 道上引起的額外相位延遲匹配誤差可以忽略不計(jì),或者在工作 溫度范圍的信號鏈誤差預(yù)算范圍內(nèi)。
4.低失真和低噪聲應(yīng)用的元件選擇挑戰(zhàn)
對于低諧波失真和低噪聲應(yīng)用,用戶必須為信號鏈設(shè)計(jì)選擇合 乎要求的元件。模擬電子元件不是完全線性的,會引起諧波失 真。Walsh 的文章中討論了如何選擇低失真放大器和如何計(jì)算 放大器噪聲。放大器等有源元件需要低THD + N,同時(shí)也要考 慮普通電阻和電容等無源元件的失真和噪聲。
電阻的非線性有兩個(gè)來源:電壓系數(shù)和功率系數(shù)。根據(jù)具體應(yīng) 用,高性能信號鏈可能需要使用由特定技術(shù)制造的電阻,如薄 膜或金屬電阻。如果選擇不當(dāng),輸入濾波電容可能會造成顯著 失真。如果成本預(yù)算允許,聚苯乙烯和NP0/C0G 陶瓷電容是 很好的備選元件,可以改善THD。
除放大器噪聲外,電阻和電容也會有電子噪聲,后者是由處于 均衡態(tài)的電導(dǎo)體內(nèi)部的電荷載子的熱擾動產(chǎn)生的。RC 電路的 熱噪聲有一個(gè)簡單的表達(dá)式,電阻R 是滿足濾波要求所需要 的,同時(shí)R 越高,相應(yīng)的熱噪聲也越大。RC 電路的噪聲帶寬 為1/(4RC)。
除放大器噪聲外,電阻和電容也會有電子噪聲,后者是由處于 均衡態(tài)的電導(dǎo)體內(nèi)部的電荷載子的熱擾動產(chǎn)生的。RC 電路的 熱噪聲有一個(gè)簡單的表達(dá)式,電阻R 是滿足濾波要求所需要 的,同時(shí)R 越高,相應(yīng)的熱噪聲也越大。RC 電路的噪聲帶寬 為1/(4RC)。
kB (玻爾茲曼常數(shù)) = 1.38065 × 10–23m2kgs–2K–1
T 為溫度 (K)
f 為磚墻濾波器近似帶寬
圖6 顯示在EVAL-AD7960FMCZ評估板上,NP0 電容和X7R 電容對THD 性能的影響:(a) 顯示一個(gè)10 kHz 正弦波信號音 的頻譜,C76 和C77 為1 nF 0603 NP0 電容,而 (b) 顯示使用 1 nF 0603 X7R 電容時(shí)的頻譜。
(a) 0603 1nF NP0 電容
(b) 0603 1nF X7R 電容
圖6.在EVAL-AD7960FMCZ 評估板上NP0 和X7R 電容對THD 的影響
了解前面的設(shè)計(jì)考慮之后,便可利用ADI 公司的模擬濾波器向?qū)гO(shè)計(jì)有源模擬濾波器。它會根據(jù)應(yīng)用要求計(jì)算電容和電阻值,并選擇合適的放大器。
數(shù)字濾波器考慮
SAR 型和Σ-Δ 型ADC 正在穩(wěn)步實(shí)現(xiàn)更高的采樣速率和輸入帶 寬。以兩倍奈奎斯特速率對一個(gè)信號過采樣,會將ADC 量化 噪聲能量均勻擴(kuò)散到兩倍頻段中。這樣便很容易設(shè)計(jì)數(shù)字濾波 器來限制數(shù)字化信號的頻帶,然后通過抽取來提供所需的最終 采樣速率。這種技術(shù)可降低帶內(nèi)量化誤差并提高ADC SNR。 它還能放寬濾波器滾降要求,從而減輕抗混疊濾波器的壓力。 過采樣降低了對濾波器的要求,但需要更高采樣速率ADC 和 更快的數(shù)字處理。
1. 對ADC 使用過采樣速率所取得的實(shí)際SNR 改善
利用過采樣和抽取濾波器所取得的SNR 改善,可從N 位ADC 的 理論SNR 求得:SNR = 6.02 × N + 1.76 dB + 10 × log10[OSR], OSR = fs/(2 × BW)。注意:此公式僅適用于只存在量化噪聲的 理想ADC。
圖7.奈奎斯特轉(zhuǎn)換器過采樣
還有很多其他因素會將噪聲引入ADC 轉(zhuǎn)換代碼中。例如:信 號源和信號鏈器件的噪聲,芯片熱噪聲,散粒噪聲,電源噪聲, 基準(zhǔn)電壓噪聲,數(shù)字饋通噪聲,以及采樣時(shí)鐘抖動引起的相位 噪聲。這種噪聲可能會均勻分布在信號頻段中,表現(xiàn)為閃爍噪 聲。因此,實(shí)際實(shí)現(xiàn)的ADC SNR 改善幅度一般低于用公式計(jì) 算出的值。
2. EVAL-AD7960FMCZ 評估板上利用過采樣實(shí)現(xiàn)的動態(tài)改善
在應(yīng)用筆記AN-1279 中,256×過采樣下18 位AD7960 ADC 的 實(shí)測動態(tài)范圍為123 dB。這是用于高性能數(shù)據(jù)采集信號鏈,如 光譜分析、磁共振成像 (MRI)、氣相色譜分析、振動、石油/ 天然氣勘探和地震系統(tǒng)等。
如圖8 所示,與理論SNR 改善幅度計(jì)算相比,測得的過采樣 動態(tài)范圍低1 dB 至2 dB。原因是來自信號鏈器件的低頻噪聲 限制了總體動態(tài)范圍性能。
(a) 無OSR 的動態(tài)范圍
(b) OSR = 256 的動態(tài)范圍
圖8.OSR 256 時(shí)的動態(tài)范圍改善
3. 充分利用SAR 型和Σ-Δ 型ADC 中的集成數(shù)字濾波器
數(shù)字濾波器通常位于FPGA、DSP 或處理器中。為了減少系統(tǒng) 設(shè)計(jì)工作,ADI 公司提供了一些集成后置數(shù)字濾波器的精密 ADC。例如,AD7606 集成了一個(gè)一階后置數(shù)字sinc 濾波器用 于過采樣。它很容易配置,只需上拉或下拉OS 引腳。Σ-Δ 型 ADC AD7175-x 不僅有傳統(tǒng)sinc3 濾波器,還有sinc5 + sinc1 和增強(qiáng)型50 Hz/60 Hz 抑制濾波器。AD7124-x 提供快速建立模 式(sinc4 + sinc1 或sinc3 + sinc1 濾波器)功能。
4.多路復(fù)用采樣ADC 的延遲取舍
延遲是數(shù)字濾波器的一個(gè)缺點(diǎn),它取決于數(shù)字濾波器階數(shù)和主 時(shí)鐘速率。對于實(shí)時(shí)應(yīng)用和環(huán)路響應(yīng)時(shí)間,應(yīng)當(dāng)限制延遲。數(shù) 據(jù)手冊所列的輸出數(shù)據(jù)速率是指在單一通道上執(zhí)行連續(xù)轉(zhuǎn)換 時(shí)轉(zhuǎn)換結(jié)果有效的速率。當(dāng)用戶切換到另一通道時(shí),建立Σ-Δ 調(diào)制器和數(shù)字濾波器還額外需要些時(shí)間。與這些轉(zhuǎn)換器相關(guān)的 建立時(shí)間是指通道變更之后輸出數(shù)據(jù)反映輸入電壓所需的時(shí) 間。通道變更之后,為精確反映模擬輸入,必須清除數(shù)字濾波 器中與前一模擬輸入相關(guān)的全部數(shù)據(jù)。
以前,Σ-Δ 型ADC 的通道切換速度比數(shù)據(jù)輸出速率要小得多。 因此,在多路復(fù)用數(shù)據(jù)采集系統(tǒng)等切換應(yīng)用中,必須明白:獲 得轉(zhuǎn)換結(jié)果的速率要比對單一通道連續(xù)采樣時(shí)可達(dá)到的轉(zhuǎn)換 速率低好幾倍。
ADI 公司的某些新型Σ-Δ ADC(如AD7175-x)內(nèi)置優(yōu)化的數(shù)字 濾波器,可減少通道切換時(shí)的建立時(shí)間。AD7175-x 的sinc5 + sinc1 濾波器主要用于多路復(fù)用應(yīng)用,在10 kSPS 和更低的輸出 數(shù)據(jù)速率時(shí),可實(shí)現(xiàn)單周期建立。
5.數(shù)字濾波器通過抽取避免混疊
很多文章都討論過,過采樣頻率越高,模擬濾波器設(shè)計(jì)就越容 易。當(dāng)采樣速率高于滿足奈奎斯特準(zhǔn)則所需的速率時(shí),便可使 用較簡單的模擬濾波器來避免受到極高頻率所產(chǎn)生的混疊影 響。很難設(shè)計(jì)一個(gè)能夠衰減所需頻段而不失真的模擬濾波器, 但很容易設(shè)計(jì)一個(gè)利用過采樣抑制較高頻率的模擬濾波器。這 樣便很容易設(shè)計(jì)數(shù)字濾波器來限制轉(zhuǎn)換信號的頻帶,然后通過 抽取來提供所需的最終采樣速率,但又不會喪失所需信息。
實(shí)施抽取之前,需要確保這種重新采樣不會引入新的混疊問 題。抽取之后,確保輸入信號符合奈奎斯特關(guān)于采樣速率的 理論。
EVAL-AD7606/EVAL-AD7607/EVAL-AD7608EDZ 評估板可以每 通道200 kSPS 的速率運(yùn)行。在下面的測試中,配置其采樣速率為 6.25 kSPS,過采樣比為32。然后,將一個(gè)3.5 kHz –6 dBFS 正弦 波施加于AD7606。圖9 顯示2.75 kHz (6.25 kHz – 3.5 kHz) 處有 一個(gè)–10 dBFS 混疊鏡像。因此,若ADC 之前沒有合格的抗混疊 模擬濾波器,當(dāng)使用過采樣時(shí),數(shù)字濾波器就可能會因?yàn)槌槿《?引起混疊鏡像。應(yīng)使用模擬抗混疊濾波器來消除這種疊加于模擬 信號上的噪聲尖峰。
圖9.OSR 抽取采樣率小于奈奎斯特頻率時(shí)的混疊
結(jié)論
本文討論的挑戰(zhàn)和考慮可幫助設(shè)計(jì)人員設(shè)計(jì)出實(shí)用的濾波器 以實(shí)現(xiàn)精密采集系統(tǒng)的目標(biāo)。模擬濾波器必須在不違反系統(tǒng)誤 差預(yù)算的條件下與SAR 型或Σ-Δ 型ADC 的非理想輸入結(jié)構(gòu)接 口,數(shù)字濾波器不應(yīng)在處理器端引起誤差。這不是簡單的任務(wù), 必須在系統(tǒng)規(guī)格、響應(yīng)時(shí)間、成本、設(shè)計(jì)工作量和資源等方面 做出權(quán)衡。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
- 看完CES看CITE 2025開年巨獻(xiàn)“圳”聚創(chuàng)新
- 傳感器和轉(zhuǎn)換器的設(shè)計(jì)應(yīng)用
- 原來為硅MOSFET設(shè)計(jì)的DC-DC控制器能否用來驅(qū)動GaNFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級本
超級電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊